Cnzptar 2. Multipoles, Electrostatics of Macroscopic
Media, Dielectrics

4.1 Multipole Expansion

@ The potential from a Charge density outside a sphere can be written as
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< multipole expansion

@ ¥=0: monopole term, ¥=1: dipole terms, {=2: quadrupole terms, etc.

® The problem is to determine d., In terms of the charge density p(x').
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® For a real charge density the moments with m<0 are ¢, =(-1)" q;m
@ electric dipole moment: p = f x'p(x')d’ x
@ traceless quadrupole moment tensor: 0, =f (3x' x =6, ) p(x')d’ x

@ the Tth multipole coefficients [(2€+1) in number] are linear combinations of the
corresponding multipoles expressed in rectangular coordinates.
p-X

1 1
9. : +EZQ”
i j

4me,|r r

xl_xj
- + ..
7

@ expansion in rectangular coordinates (x)=

by direct Taylor series expansion of 1/|x-x'|.



@ The electric field components for a given multipole are
t+1 q,., (

E=-(Vo) = Y, (0, ¢)
' T 20+1e, 0t o Er:2pC089
41‘(4501*3
1 4d¢w O : — 1
Eq=—(V ®)y=— ff -—Y, (0,¢) 7 _ psine < P=pK
2¢+1 eor+ 00 Ey,= 3
4me,r
1 ¢, 1Im E. =0
E¢:_<V¢>q§: Yfm(e’(b) -

2¢0+1 ¢, r " sin 0

. E<X):3n(p-n)—p c _V p(x—x,)

41re,|x—x, 41 |x—x,

@ The Cartesian multipole moments are (f+1)(f+2)/2 in number and for >1 are
more numerous than the (2€+1) spherical components.

@ The root of the differences lies in the different rotational transformation
properties of the 2 types of multipole moments; the Cartesian tensors are
reducible, the spherical are irreducible. [Problem 4.3]

@ Note that for =2 we have recognized the difference by defining a traceless
Cartesian quadrupole moment.



@ in general the multipole moment coefficients depend on the choice of origin.

® For a point charge e located at x,= (r,,0,,¢,), the multipole moments are

(0, p,) < flonvanishing > g, = ¢ _ onlyone infiependent
in general V41T of the location

® For 2 point charges +e¢ and -e at x, and x,, the multipole moments are
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® Theorem: the values of g,,, for the lowest nonvanishing multipole moment of any

charge distribution are independent of the choice of origin, but all higher
multipole moments do in general depend on the location of the origin. [Ex 4.4]

@ Consider a localized charge distribution p(x') that gives rise to an electric field
throughout space. Wish to calculate the integral of E over the volume of a sphere
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where p is the electric dipole moment of the charge \
distribution with respect to the center of the sphere. \ /

@ this volume integral is independent of the size of the Ry i
spherical region of integration provided all the charge is inside.
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» with the charge all exterior to the sphere = r_=R, r =r
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@ the average value of the electric field over a spherical
volume containing no charge is the value of the field
at the center of the sphere.

@ modification of the eqn for the electric field of a dipole
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@ The added delta function does not contribute to the field
away from the site of the dipole. Its purpose is to yield the
required volume integral.




4.2 Multipole Expansion of the Energy of a Charge Distribution
in an External Field

@ For a localized charge distribution in an external potential, the electrostatic

energy of the system is W= f o (x)®(x)d® x
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@ This expansion shows the characteristic way in which the various multipoles
interact with an external field—the charge with the potential, the dipole with the
electric field, the quadrupole with the field gradient, and so on.

@ In nuclear physics the quadrupole interaction is of particular interest. The
magnitudes and signs of the electric quadrupole moments reflect the nature of
the forces between neutrons and protons, as well as the shapes.



@ A nuclear state has associated with it a quantum-mechanical charge density,
which depends on the quantum numbers (J,M,x) but is cylindrically symmetric

about the z axis. Thus the only nonvanishing quadrupole moment is g,, or Q.

@ The quadrupole moment of a nuclear state is defined as
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® The states of different M value for the same J will have different quadrupole

moments and so a degeneracy in M value will be removed by the quadrupole

coupling to the "external" electric field. Detection of these small energy
differences allows the determination of the quadrupole moment of the nucleus.

@ The interaction energy between two dipoles
W =—p _pyp,—3(n pl)<n3 P) 1) & n= %
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@ The dipole-dipole interaction is attractive or repulsive, depending on the dipoles'
orientation. For fixed orientation and separation of the dipoles, the value of the
interaction, averaged over the relative positions of the dipoles, is zero.

@ If the moments are generally parallel, attraction (repulsion) occurs when the
moments are oriented more parallel (perpendicular) to the line joining their
centers. For antiparallel moments the reverse is true.



4.3 Elementary Treatment of Electrostatics with Ponderable Media

@ Much of electrostatics concerns itself with charges and fields in ponderable
media whose respective electric responses must be taken into account.

@ when an averaging is made of the homogeneous equation

VXE . =0 = VXE=0 = theelectric field is still derivable from a potential

micro

@ If an electric field is applied to a medium, the molecular charge density in the
medium will be distorted. The multipole moments will be different from what they
were in the absence of the field. The dominant molecular multipole with the
applied fields is the dipole.

s P(x)=) N (p,) < theelectric polarization (dipole moment per unit volume)

@ [f the molecules have a net charge and there is macroscopic excess or free
charge, the charge density at the macroscopic level is

p(x)=2 N {e)+p, . <= (e)=0usually = p(x)~p
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@ [f we now look at the medium from a macroscopic point of view, without higher

macroscopic multipole moment densities, the potential caused in AV is
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@ The divergence of P in the effective charge density comes from that if the
polarization is nonuniform there can be a net increase or decrease of charge
within any small volume.

@ assume the response of the system to an applied field is /inear and the medium
is isotropic = P=¢,X E < X :electric susceptibility

= D=e¢E < e=¢,(1+X) = e€le,=1+X :dielectric constant

= V:E=pl/e forauniform dielectric < ¢ independent of position

@ All problems in the medium are reduced to those earlier ones, except that the
electric fields produced by given charges are reduced by a factor €,/e. The
reduction comes from a polarization of the atoms that produce fields in opposition
to that of the given charge.



@ if there are different media juxtaposed, we must consider the boundary
conditions on D and E at the interfaces between media

(D,—D,)-ny, =0
(E,—E,)Xn,, =0 on the boundary surface

o macroscopic surface-charge density

@ the boundary conditions are valid for time-varying as well as static fields.



4.4 Boundary- Value Problems with Dielectrics
@ find the appropriate solution to the equations |

e, V-E=p, 2z>0 & V XE=0 everywhere
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@ V X E =0 everywhere = E is derivable from a poteﬁtial >E=—V ¢

@ use the image method €2 €1 R
1 , _
P = q n q >0 < R, . .
4mme, |R, R, R,= 0
1 q'' q
b= , z<0 "A
41me, R, d—>t<——d —
%) -1 0 -1 d 0 1 0 _1 —p
@ _Rl _—— R2 = - R1 - R2

S)!
N
i
o
S)!
N
la\|
Il
o
©
N
+
N
N
w
S)!
©
A\
Il
o
)
©
i
o
©
N
+
QL
N
w



€, €

ez—l—e1

\\

& 6 T qs
/

/

€2+€1

= —V-P:—EOEeV-Eocqé(z—d)

the polarization-charge density

@ At the surface, X, takes a discontinuous //

jump, AX,=(€,-€,)/€, as z passes through z=0
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@ In the limit €,> €, the dielectric €, behaves much like a conductor in that E,—0
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® The dipole moment p can be regarded as the volume integral of the polarization
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@ The problem of a spherical cavity in a
dielectric medium and with an applied

electric field parallel to the z axis can be

handled in exactly the same way as the
dielectric sphere.




@ the results for the cavity can be obtained
from those of the sphere by the replace-
ment e/e,—e€y/€
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the dipole orients oppositely to the applied field



4.5 Molecular Polarizability and Electric Susceptibility
@ In dense media the polarization of neighboring molecules gives rise to an

internal field E, in addition to the average macroscopic field E, so that the total

field at the molecule is E+E;, = E=E -E,

near

® Inside some macroscopically small, but microscopically large, volume V we
subtract out the smoothed macroscopic equivalent of the nearby molecular

contributions (E,) and replace it with the correctly evaluated contribution (E,,.).

This difference is the extra internal field E..

@ For the volume chosen to be a sphere, the total dipole moment inside is

R’ . .
p=PV= Am P <« assume V is so small that P is essentially constant
3
P P
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@ For atoms in a simple cubic lattice E, ., vanishes at any lattice site (by Lorentz).
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@ It seems plausible that E ...=0 also for completely ra

- O +—>

ndom situations. Although it

is not true, it is a good working assumption that E, .,.=0 for most materials.

@ The polarization vector P=N (p

mol

@ This dipole moment is approximately proportional to

) < (p_):average dipole moment of molecules

the electric field acting on

the molecule. (p_)=¢y (E+E) < y :molecular polarizability
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4.6 Models for the Molecular Polarizability
@ The polarization of a collection of atoms or molecules can arise in 2 ways:

1. the applied field distorts the charge distributions and so produces an induced
dipole moment in each molecule;

2. the applied field tends to line up the initially randomly oriented permanent
dipole moments of the molecules.

@ To estimate the induced moments we consider a simple model of harmonically

bound charges (electrons & ions). Each charge e is bound under a restorlng force

2 2
e e

E = y=
2 2
m w, €, M Wy
@ Since y has the dimensions of a volume, its magnitude must be of the order of
molecular dimensions or less, namely y,<10*"m’

mol

—eECF——mw X = p —=ex=

mol

@ the binding frequencies of electrons in atoms must be of the order of light

frequencies ,, ~30004 = w=6x10"s" = y ~e*/(e,mw’)~0.88x10 % m’
consistent with the molecular volume estimate. N air 1.00054
_ _ N =1.0072
s Forgases N=2.7x10"/m’> = X <10 = e<1+10° = M ’
NCH on = 1.0057

@ For solid or liquid dielectrics N =10*—-10*/m’> = X ~10"'
‘ N, =1.000068



@ Thermal agitation of the molecules could modify the molecular polarizability.

@ the probability distribution of particles in phase space for classical systems is
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f(H):e e = <pm01>:f< )f( 1)3 3 g
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® For a harmonically bound charge with an applied field in the z direction
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@ The 2nd type of polarizability is that caused by the partial orientation of random
permanent dipole moments. The orientation polarization is important in "polar"
substances such as HCI and H,O.

@ With an applied field there is a tendency to line up along the field in the
configuration of lowest energy, thus there will be an average dipole moment.

@ the Hamiltonian of a molecule H=H,—p, E

poEcos0/kT 2
f pycos e dQ 1 Py r by expanding the exponentials

[ e a0 3kT  for p E/kT <1

= (p )=



@ In general both types of polarization,
induced and orientation, are present
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4.7 Electrostatic Energy in Dielectric Media

1
s W= 5 f p(x)®(x)d’x for the energy due to a charge density and a potential

cannot in general be used in our macroscopic description of dielectric media
because work is done in a dielectric media not only to bring real(macroscopic)
charge into position, but also to produce polarization in the medium.

@ consider a small change in the energy due to some sort of change in the
macroscopic charge density existing in all space

5W=f5p(x)d>(x)d3x:fE-5Dd3x « E=—V® & 5p=V-6D <V.D=p
D

= szd?’xf E-6D
0

2E-6D=5(E.-p) Ifthemedium _ W:le-Ddezlfp¢d3x
is linear 2 2

1
° W= E f p(x)®(x)d’x s valid macroscopically only if the behavior is linear.

@ An interesting problem is the change in energy when a dielectric object with a
linear response is placed in an electric field whose sources are fixed.

@ The initial electrostatic energy W = 1 f E-D d’x < D =¢ E,
2
1
@ Introduce a dielectric object into the field W _=— f E-Dd°x < D=¢cE
2
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1

——fVP-EOde fore =¢, & P=(e—¢,)E (2)
= W:—lP'EO

2

@ The factor %2 in the expression is because it represents the energy density of a
polarizable dielectric in an external field, rather than a permanent dipole.

@ (1) & (2) show that a dielectric body will tend to move toward regions of
increasing field E,; provided e>¢,.

@ imagine a small generalized displacement of the body, then there will be a
change in the energy, and this means that there is a force acting on the body:

F =— < with the sources of the field fixed

0& |o



® In practical situations the electric fields are often produced with fixed potentials.

@ For linear media W:lfp(x)qﬁ(x)dBX = 5W=lf(p5¢+¢5p)d3x (3)
2

2
@ if the dielectric properties are not changed, the 2 terms in (3) are equal. If the
dielectric properties are altered, the 2 contributions are not necessarily the same.

@ The reason for the difference is the polarization charge. The change in dielectric
properties can be thought of as a change in the polarization-charge density.

@ The process of altering the dielectric properties with fixed potentials can be
viewed as taking place in 2 steps. In the 1% step the dielectric properties are

changed with the charges held fixed 1
5W1=lfp5d51d3x:——fv(e—eI)E-EIde
2 2

@ In the 2™ step the potentials is restored to the original values. There will be a
flow of charge to change the potential 6®,=-69,

1
= 6W2=Ef(p5d52—|—d55p2)d3x=—25W1

1 3
- 5W=6W2—|—5W1=—5fp6¢1dx = SW,=—5W,

@ If a dielectric with €/€,>1 moves into a region of greater field strength, the

energy increases instead of decreases. oW
= FE = -|— -
0¢& |y



