
   

Chapter 4Chapter 4 Multipoles, Electrostatics of Macroscopic
                 Media, Dielectrics 

 The potential from a charge density outside a sphere can be written as

 ℓ=0: monopole term, ℓ=1: dipole terms, ℓ=2: quadrupole terms, etc.

 The problem is to determine qℓm in terms of the charge density (x').

4.1 Multipole Expansion 
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 For a real charge density the moments with m<0 are

 electric dipole moment:

 traceless quadrupole moment tensor:

 the ℓth multipole coefficients [(2ℓ+1) in number] are linear combinations of the 
corresponding multipoles expressed in rectangular coordinates.

 expansion in rectangular coordinates

by direct Taylor series expansion of 1/|x-x'|.      
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 The electric field components for a given multipolefor a given multipole are

 The Cartesian multipole moments are (ℓ+1)(ℓ+2)/2 in number and for ℓ>1 are 
more numerous than the (2ℓ+1) spherical components.

 The root of the differences lies in the different rotational transformation 
properties of the 2 types of multipole moments; the Cartesian tensors are 
reducible, the spherical are irreducible. [Problem 4.3]

 Note that for ℓ=2 we have recognized the difference by defining a traceless 
Cartesian quadrupole moment. 
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 in general the multipole moment coefficients depend on the choice of origin.

 For a point charge e located at x0= (r0,0,0), the multipole moments are

 For 2 point charges +e and -e at x0 and x1, the multipole moments are

 TheoremTheorem: the values of qℓm for the lowest nonvanishing multipole moment of any 
charge distribution are independent of the choice of origin, but all higher 
multipole moments do in general depend on the location of the origin. [Ex 4.4]

 Consider a localized charge distribution (x') that gives rise to an electric field 
throughout space. Wish to calculate the integral of E over the volume of a sphere

q
ℓ m= e [r 0

ℓ Y
ℓ m
* 0, 0−r 1

ℓ Y
ℓ m
* 1, 1] ⇒ q00=0

⇒ [q10= 3 /4  e z0− z1

q11=−3 /8  e [ x0− x1− i  y0− y1]
⇐ independent of the location

depend only on the relative position

∫r R
E x  d3 x=−∫r R

∇  d3 x=−∫rR
 n R2 d

=−
R2

4  0

∫ x '  d3 x '∫r= R

n d
∣x−x '∣

⇐ =
1

4  0

∫
 x ' 
∣x−x '∣

d3 x '

q
ℓ m= e r0

ℓ Y
ℓm
* 0,0 ⇐ nonvanishing

in  general
⇒ q00=

e

4 
⇐ only one independent

of the location



   

 If the sphere completely encloses the charge density

where p is the electric dipole moment of the charge 
distribution with respect to the center of the sphere.

 this volume integral is independent of the size of the 

spherical region of integration provided all the charge is inside.

 with the charge all exterior to the sphere    
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 the average value of the electric field over a spherical 
volume containing no charge is the value of the field 
at the center of the sphere.

 modification of the eqn for the electric field of a dipole

 The added delta function does not contribute to the field 
away from the site of the dipole. Its purpose is to yield the 
required volume integral. 

E x = 1

4  0
[3 n p⋅n −p

∣x−x0∣
3

−
4 

3
p  x−x0] 1



   

 For a localized charge distribution in an external potential, the electrostatic 
energy of the system is

 This expansion shows the characteristic way in which the various multipoles 
interact with an external field—the charge with the potential, the dipole with the 
electric field, the quadrupole with the field gradient, and so on. 

 In nuclear physics the quadrupole interaction is of particular interest. The 
magnitudes and signs of the electric quadrupole moments reflect the nature of 
the forces between neutrons and protons, as well as the shapes. 

4.2 Multipole Expansion of the Energy of a Charge Distribution 
      in an External Field 
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 A nuclear state has associated with it a quantum-mechanical charge density, 

which depends on the quantum numbers (J,M,) but is cylindrically symmetric 

about the z axis. Thus the only nonvanishing quadrupole moment is q20 or Q33.

 The quadrupole moment of a nuclear state is defined as

 The states of different M value for the same J will have different quadrupole 

moments and so a degeneracy in M value will be removed by the quadrupole 
coupling to the "external" electric field. Detection of these small energy 
differences allows the determination of the quadrupole moment of the nucleus.

 The interaction energy between two dipoles

 The dipole-dipole interaction is attractive or repulsive, depending on the dipoles' 
orientation. For fixed orientation and separation of the dipoles, the value of the 
interaction, averaged over the relative positions of the dipoles, is zero.

 If the moments are generally parallel, attraction (repulsion) occurs when the 
moments are oriented more parallel (perpendicular) to the line joining their 
centers. For antiparallel moments the reverse is true.   
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 Much of electrostatics concerns itself with charges and fields in ponderable 
media whose respective electric responses must be taken into account.

 when an averaging is made of the homogeneous equation

 If an electric field is applied to a medium, the molecular charge density in the 
medium will be distorted. The multipole moments will be different from what they 
were in the absence of the field. The dominantdominant molecular multipole with the 
applied fields is the dipole.

 If the molecules have a net charge and there is macroscopic excess or free 
charge, the charge density at the macroscopic level is

 If we now look at the medium from a macroscopic point of view, without higher 

macroscopic multipole moment densities, the potential caused in V is  

4.3 Elementary Treatment of Electrostatics with Ponderable Media  

 x , x ' = 1

4  0
[  x ' 
∣x−x '∣

 V
P x ' ⋅x−x ' 

∣x−x '∣3
 V ] ⇐ x∉ V

∇×Emicro=0 ⇒ ∇×E=0 ⇒ the electric field is still derivable from a potential

P x=∑ N i 〈pi〉 ⇐ the electric polarization dipole moment per unit volume

 x =∑ N i 〈ei 〉excess ⇐ 〈ei〉=0 usually ⇒  x ≈excess



   

 The divergence of P in the effective charge density comes from that if the 
polarization is nonuniform there can be a net increase or decrease of charge 
within any small volume.

 assume the response of the system to an applied field is linear and the medium 

is isotropic 

 All problems in the medium are reduced to those earlier ones, except that the 
electric fields produced by given charges are reduced by a factor 0/. The 
reduction comes from a polarization of the atoms that produce fields in opposition 
to that of the given charge. 
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 if there are different media juxtaposed, we must consider the boundary 
conditions on D and E at the interfaces between media

 the boundary conditions are valid for time-varying as well as static fields. 

D2−D1⋅n21=

E2−E1×n21=0
⇐  : macroscopic surfacecharge density

on the boundary surface



   

 find the appropriate solution to the equations

& the boundary condition

                             at z=0:

                  everywhere ⇒ E is derivable from a potential ⇒ 

 use the image method

  

4.4 Boundary- Value Problems with Dielectrics   
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 axial symmetry of the geometry
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 The dipole moment p can be regarded as the volume integral of the polarization

 The problem of a spherical cavity in a 
dielectric medium and with an applied 

electric field parallel to the z axis can be 
handled in exactly the same way as the 
dielectric sphere. 
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 the results for the cavity can be obtained 
from those of the sphere by the replace-
ment /00/
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 In dense media the polarization of neighboring molecules gives rise to an 

internal field Еi in addition to the average macroscopic field E, so that the total 

field at the molecule is E+Ei

 Inside some macroscopically small, but microscopically large, volume V we 
subtract out the smoothed macroscopic equivalent of the nearby molecular 

contributions (EP) and replace it with the correctly evaluated contribution (Enear). 

This difference is the extra internal field Ei.

 For the volume chosen to be a sphere, the total dipole moment inside is

 For atoms in a simple cubic lattice For atoms in a simple cubic lattice EEnearnear vanishes at any lattice site vanishes at any lattice site (by Lorentz).

Proof:     

4.5 Molecular Polarizability and Electric Susceptibility    
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 It seems plausible that Enear=0 also for completely random situations. Although it 
is not true, it is a good working assumption that Enear0 for most materials.

 The polarization vector

 This dipole moment is approximately proportional to the electric field acting on 
the molecule.
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 The polarization of a collection of atoms or molecules can arise in 2 ways: 

1. the applied field distorts the charge distributions and so produces an induced 
    dipole moment in each molecule;

2. the applied field tends to line up the initially randomly oriented permanent 
    dipole moments of the molecules.

 To estimate the induced moments we consider a simple model of harmonically 

bound charges (electrons & ions). Each charge e is bound under a restoring force

 Since  has the dimensions of a volume, its magnitude must be of the order of 
molecular dimensions or less, namely el≤10-29m3.

 the binding frequencies of electrons in atoms must be of the order of light 
frequencies

consistent with the molecular volume estimate.

 For gases 

 For solid or liquid dielectrics   

4.6 Models for the Molecular Polarizability    
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 Thermal agitation of the molecules could modify the molecular polarizability.

 the probability distribution of particles in phase space for classical systems is

 For a harmonically bound charge with an applied field in the z direction

 The 2nd type of polarizability is that caused by the partial orientation of random 
permanent dipole moments. The orientation polarization is important in "polar" 
substances such as HCl and H2O.

 With an applied field there is a tendency to line up along the field in the 
configuration of lowest energy, thus there will be an average dipole moment.
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 In general both types of polarization, 
induced and orientation, are present 
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                                        for the energy due to a charge density and a potential 

cannot in general be used in our macroscopic description of dielectric media 
because work is done in a dielectric media not only to bring real(macroscopic) 
charge into position, but also to produce polarization in the medium.

 consider a small change in the energy due to some sort of change in the 
macroscopic charge density existing in all space

                                       is valid macroscopically only if the behavior is linear.

 An interesting problem is the change in energy when a dielectric object with a 
linear response is placed in an electric field whose sources are fixed.

 The initial electrostatic energy

 Introduce a dielectric object into the field 

4.7 Electrostatic Energy in Dielectric Media    
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 The factor ½ in the expression is because it represents the energy density of a 
polarizable dielectric in an external field, rather than a permanent dipole.

 (1) & (2) show that a dielectric body will tend to move toward regions of 
increasing field EI provided >I.

 imagine a small generalized displacement of the body, then there will be a 
change in the energy, and this means that there is a force acting on the body:    
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 In practical situations the electric fields are often produced with fixed potentials.

 For linear media

 if the dielectric properties are not changed, the 2 terms in (3) are equalequal. If the 
dielectric properties are altered, the 2 contributions are not necessarily the same. 

 The reason for the difference is the polarization charge. The change in dielectric 
properties can be thought of as a change in the polarization-charge density.
 
 The process of altering the dielectric properties with fixed potentials can be 

viewed as taking place in 2 steps. In the 1st step the dielectric properties are 
changed with the charges held fixed

 In the 2nd step the potentials is restored to the original values. There will be a 
flow of charge to change the potential 2=-1  

 If a dielectric with /I>1 moves into a region of greater field strength, the 
energy increases instead of decreases. 

⇒  W 2=
1

2
∫  2  2 d3 x=−2 W 1

⇒  W = W 2W 1=−
1

2
∫  1 d3 x ⇒  W V =− W Q

W =
1

2
∫ x   x  d3 x ⇒  W =

1

2
∫     d3 x 3

 W 1=
1

2
∫   1 d3 x ⇒− 1

2
∫V

−I E⋅EI d3 x

⇒ F=
∂ W
∂  ∣V


