
  

Chapter 14Chapter 14Chapter 14Chapter 14Chapter 14Chapter 14Chapter 14Chapter 14Chapter 14Chapter 14 Radiation by Moving Charges 

 The integral gives a contribution only
(1) �=�0  �                        the light-cone condition

(2) x0>r0(�0)   the retardation requirement

 The Green function is different from 0 only on 
the backward light cone of the observation point.

 The world line of the particle intersects the light 

cone at 2 points, one earlier and one later than x0. 

The earlier point is the only part of the path that 

contributes to the fields at x�.

       

14.1 Liénard-Wiechert Potentials and Fields for a Point Charge 
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 The velocity fields are staticstatic fields falling off as R-2, the acceleration fields are 

radiationradiation fields, E & � being transverse to the radius vector and varying as R-1. 

 The other components of E and � come out similarly.
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the radiation is polarized in the plane of dv/dt and n.

 Larmor's formula can be generalized by arguments about 
covariance under Lorentz transformations to yield a result 
that is valid for arbitrary velocities of the charge.

 Radiated EM energy behaves like the 0th component of a 4-vector, so the power  
is a Lorentz invariant.

 find a Lorentz invariant that involves only �  and d�/dt and reduces to Larmor's 

formula for ��1, then we have the desired generalization. The result is unique.

14.2 Total Power Radiated by an Accelerated Charge: 
       Larmor's Formula and Its Relativistic Generalization
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 the expression for radiated power can be used for charged-particle accelerators. 
Radiation losses are a limiting factor in the maximum practical energy attainable. 

 For a given applied force, the radiated power (1) depends inversely on mass2 of 
the particle. Consequently these radiative effects are largest for electrons.

 In a linear accelerator the motion is 1d

for linear motion the power radiated depends only on the external forces that 

determine dE/dx, not on the actual energy or momentum of the particle.

 the radiation loss in an electron linear accelerator is unimportant unless the 

gain in energy is of the order of mc2/(e2/mc2)~2�1014MeV/m. So radiation losses 

are negligible in linear accelerators, whether for electrons or heavier particles. 

the radiated power

power by external sources
=

P

d E /d t
=

2

3

e
2

m
2

c
3

1

v

d E

d x
�

2

3

e
2 /m c

2

m c
2

d E

d x
for �� 1

�
d �p

d �



d �p

d �
=�

d p

d �
�
2

�
1

c
2
�

d E

d �
�
2

=�
d p

d �
�
2

��
2
�
d p

d �
�
2

� E =�m c
2,
p=� m v

d E=m �3
v d v , d p=m �3

d v

� P=
2

3

e
2

c
�6 [ �� 2���× �� �2] the Lienard result � d t=� d �

2

3

e
2

m
2

c
3
[�

d p

d �
�
2

��2 �
d p

d �
�
2

]� P=
2

3

e
2

m
2

c
3
�
d p

d t
�
2

=
2

3

e
2

m
2

c
3
�
d E

d x
�
2

�
d E

d p
=

d x

d t



  

 In circular accelerators the momentum changes rapidly in direction as the 
particle rotates, but the change in energy per revolution is small

This is less than, but not negligible to, the energy gain of a few KVs/turn. 

 At higher energies the limitation on available radiofrequency power to overcome 
the radiation loss becomes a dominant consideration. 

 The power radiated in circular electron accelerators can be expressed 
numerically as 
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 For an accelerated charge with ��1, the radial component of Poynting's vector 

energy/area/time at an observation point at t of radiation emitted at t'=t-R(t')/c.

 Two types of relativistic effect: 

(1) the effect of the spatial relationship between �  &   , which determines the
     angular distribution. 
(2) The relativistic effect from the transformation from the rest frame to the 
     observer's frame and showing itself by the factors (1-� �n) in the denominator. 

 For ultrarelativistic particles effect (2) dominates the whole angular distribution. 

 to calculate the energy radiated during a finite period [T1,T2] of acceleration,

14.3 Angular Distribution of Radiation Emitted by an Accelerated 
       Charge 
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 If the charge is accelerated only for a short time during which �  &    basically 

constant, and the observation point is far away away that n & R change negligibly 

during the interval, then the power/(solid angle) is proportional to the angular 
distribution of the energy radiated.

 the angular distribution is tipped forward 
and increases in magnitude for ��1.

 For �=0.5, corresponding to electrons of ~80 keV kinetic energy, �max=38.2°.

 For relativistic particles,

and the angular distribution is confined to a very
narrow cone in the direction of motion.
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 The peak occurs at ��=±1/2, the half-power points at ��=±0.23 & ��=±0.91.

 The rms angle of radiation in the relativistic limit

typical of the relativistic radiation patterns, regardless of the angle of �  &    .

 The total power

 for a charge in instantaneously circular motion

 In the relativistic limit, the same characteristic relativistic 
peaking at forward angles is present.

 The total power

 For circular motion

 for a given magnitude of applied force the radiation emitted with a transverse 
acceleration is a factor of �2 larger than with a parallel acceleration.
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 In the case the radiation can be thought of as a coherent superposition of 
contributions coming from the components of acceleration � & ( to the velocity.

 neglect the�-component part and approximate the radiation intensity with the 
(-component part alone because the radiation from the �-component part is of 
order �-2 compared to that from the (-component part.

 the radiation by a charged particle in 
arbitrary, extreme relativistic motion is 
approximately the same as that by a 
particle moving instantaneously 
along the arc of a circular path of 
radius of curvature 

a narrow cone or searchlight beam 
of radiation directed along the 
velocity vector of the charge. 

 For a particle in arbitrary motion the 
observer will detect a short-time pulse
(or a succession of such bursts if the 
particle is in periodic motion).   

14.4 Radiation Emitted by a Charge in Arbitrary, Extremely
       Relativistic Motion 
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 By analyzing the wave trains it implies that the spectrum of the radiation will 
contain appreciable frequency components up to a critical frequency 

 a relativistic particle emits a broad spectrum of frequencies, up to �3 times the 
fundamental frequency.
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 For relativistic motion the radiated energy is over a wide range of frequencies. 
The frequency spectrum can be analyzed precisely & quantitatively by the use of 
Parseval's theorem of Fourier analysis.

 Parseval's theoremParseval's theorem: the sum/integral of the square of a function is equal to the 
sum/integral of the square of its transform, ie, the Fourier transform is unitary.

14.5 Distribution in Frequency and Angle of Energy Radiated by 
        Accelerated Charges: Basic Results
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 (4) is correct in all circumstances. For the acceleration being different from zero 

for T1�t�T2, by adding & subtracting the integrals over the times for v=const, (3) 

will give right answer.

 In processes like beta decay, involving the almost instantaneous halting or 
setting in motion of charges, extra care must be taken to specify each particle's 
velocity as a physically sensible function of time.

 the polarization of the radiation is given by the direction of the vector integral in 
each. The intensity of radiation of a fixed polarization can be obtained by the 
scalar product of the unit polarization vector with the vector integral.

 For a number of charges

a result that can be obtained from the direct solution of the inhomogeneous wave 
eqn for the vector potential. 
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 If the duration of the pulse is very short, it is 
necessary to know the velocity & position over
only a small arc of the trajectory.

  

14.6 Frequency Spectrum of Radiation Emitted by a Relativistic 
       Charged Particle in Instantaneously Circular Motion 

x

n×�n×��=� [2
(

cos
v t

!
sin ��2

"
sin

v t

!
]

1�
n
r �t �

c
= t�

!

c
sin

v t

!
cos �

�
1��2 �2

2 �2
t�

c
2

6 !2
t

3 � �� 1���2
/2

� 3 �
rms

=��1

�
d

2
I

d � d�
=

e
2�2

42
c
	2

(
A
(
����2

"
A
"
���	

2
� �3�

where

A
"
����

c

!
�

�.

.

t e
i � [

1��2 �2

2 �2
t�

c
2

t
3

6 !2
]

d t=
!

c
���2��2��

�.

.

x e
i 4

3 x� x
3

2 d x

A
(
������

�.

.

e
i� [

1��2 �2

2 �2
t�

c
2

t
3

6 !2
]

d t=
!

c
� %��2��2�

�.

.

e
i 4

3 x� x
3

2 d x

where x=
c t

! %��2��2
, 4=

� !

3 c
���2��2�3 /2

y



  

                                               :the radiation is largely confined to the plane of the 

motion, being more confined the higher the frequency relative to c/!.

 If � gets too large, 4 will be large at all angles. Then there will be negligible 

total energy emitted at that frequency.
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the spectrum at �=0 increases with frequency as �2/3 below the critical frequency, 

reaches a maximum near �c, drops exponentially to zero above that frequency.

 Estimate the spread in angle at a fixed frequency by finding

the low-freq. components are emitted at much 
wider angles than the average.
 

the high-freq. components are within an 
angular range much smaller than average.   
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 for the low-frequency range ���с   

the spectrum increases as �1/3, and is very broad, flat at frequencies below �с.

 for the high-frequency range ���с   

 A proper integration gives
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 The radiation represented by (5) & (6) is called synchrotron radiation.

 For periodic circular motion the spectrum is actually discrete, being composed 

of frequencies that are integral multiples of the fundamental frequency �0=c/!.

 Since the charged particle repeats its motion at a rate of c/2! rev/sec, it is 

convenient to talk about the angular distribution of power radiated into the nth 

multiple of �0 instead of the energy radiated/frequency interval/particle.

 Due to the broad frequency distribution covering the visible, UV, x-ray regions, 
synchrotron radiation is a useful tool for studies in condensed matter & biology.

 electrons in the Crab nebula with energies ranging up to 1013 eV are emitting 
synchrotron radiation while moving in circular or helical orbits in a B~10-4 gauss.

 The radio emission at ~103 MHz from Jupiter comes from energetic electrons 
trapped in Van Allen belts at distances up to 100 radii from Jupiter's surface.
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 (number of photons)/frequency is to divide the intensity distribution by 7� 
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 The magnetic properties of wigglers & undulators make the electrons undergo 
special motion that results in the concentration of the radiation into a much more 
monochromatic spectrum or series of separated peaks.

 The essential idea of undulators and wigglers is that a moving relativistically 
charged particle is caused to move transversely to its general forward motion by 
magnetic fields that alternate periodically.

 The external magnetic fields induce 
small transverse oscillations in the 
motion; the associated accelerations 
cause radiation to be emitted.

A. Qualitative FeaturesA. Qualitative Features 

14.7 Undulators and Wigglers for Synchrotron Light Sources  
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 For ��1, the radiation is confined to a width *�=O(l/�) about the actual path.

 As the particle moves in its oscillatory path, the "searchlight" beam of radiation 
will flick back and forth about the forward direction.

(a) Wiggler ((a) Wiggler (8800�*��*�)) 

                                                                                        The phenomenon is very

much as in an ordinary synchrotron with bunches spaced a few centimeters apart. 

 The spectrum of radiation extends to frequencies about �3 times the basic freq.

 The wiggler radiation spectrum is very much like the synchrotron radiation 
spectrum, with a fundamental frequency �,

 If the wiggler magnet structure has N periods, the intensity of radiation will be 
N times that for a single pass of a particle in the equivalent circular machine.

9
0
=
�

0

2
=

c k
0

2
=O �10 GHz� for +

0
=O �centimeters�

basic freq. �=
c

R
� R : effective radius

of curvature
� R

min
=

1

k0

2
a
=

+
0

280

� �
c
=�3� � �=2 c8

0
/+

0



 the radiation detected by an observer is an almost coherent superposition of the 

contributions from all the oscillations of the trajectory.

 For perfect coherence & an infinite number of magnet periods (and infinitesimal 
angular resolution of the detector), the radiation would be monochromatic.

 For finite N magnet periods the spread in frequency is *�/�=O(1/N).

 the frequency spectrum from an undulator is sharply peaked.

 The FitzGerald-Lorentz contraction means that in the particle's rest frame the 
magnet structure is rushing by the particle with a spatial period +0/� 

B. Some Details of the Kinematics and Particle DynamicsB. Some Details of the Kinematics and Particle Dynamics 
 to consider the particle in its average rest frame, in which it oscillates both 

transversely and longitudinally.

 Its initial � and � remain unchanged because B does no work on the particle.
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Since K�1,      can differ significantly from �.

the requisite magnetic structure to have a sinusoidal transverse motion

 An actual magnet structure will be periodic, but not sinusoidal.

 We can make a Fourier decomposition of the actual By in multiples of k0. Each 

component will contribute to the motion. The fundamental will dominate. For 
simplicity, we keep only that contribution.   
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 The longitudinal oscillations can be found from the constancy of � 

� Particle Motion in the Average Rest Frame� Particle Motion in the Average Rest Frame 
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 the radiation in the moving frame consists of many harmonics of the basic 

frequency, with an angular distribution that is far from a simple dipole pattern. 
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D. Radiation Spectrum from an UndulatorD. Radiation Spectrum from an Undulator

 When K�1, the motion in the average rest frame is in 

nonrelativistic SHM along the x axis and it emits mono-

chromatic dipole radiation

 Since the phase-space density d3k/� is a Lorentz 

invariant, it is useful to consider �'d3P'/d3k',
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 because of the delta function, the freq and angular distributions are not indep.

(a) Angular Distribution(a) Angular Distribution
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(b) Frequency Distribution(b) Frequency Distribution

 this spectrum is for perfectly sinusoidal motion of the particle at all times.

 If N of magnet periods is finite, the duration of the oscillatory motion is finite; 
the wave train will have a fractional spread in frequency of the order of 1/N.
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 For large N the spread is small compared to the spread from finite acceptance.

 For small K, there are higher harmonics, coming from higher multipoles caused 
by the >-pattern motion.

 The 2nd harmonic comes from a coherent superposition of the fields of a dipole in 
the z-direction [z�?sin2�(t')] and a quadrupole caused by the x' motion.

(c) Energy of Photons and Number Emitted per Magnet Period(c) Energy of Photons and Number Emitted per Magnet Period

E. Numerical Values and Representative Spectra and FacilitiesE. Numerical Values and Representative Spectra and Facilities

 The parameters К and 7�max are given for electrons
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 The lower energy facilities 
provide photons in the tens of eV 
to several KeV range; the high-
energy facilities extend to 10-75 
keV, and higher at reduced flux.

F. Additional CommentsF. Additional Comments

 An undulator's fundamental 
freq. �max can be tuned by varying 

К by changing the gap in the 

magnet structure & changing B0.

 The simple undulator with beam oscillations in the 
horizontal plane provides linearly polarized light. Circular polarization can be 
provided by use of a designed helical undulator. Or, 2 undulators at right angles 
with an adjustable longitudinal spacing between them can be used to produce 
circular polarization or any other state.

 Free electron lasers are related to wigglers and undulators. An undulator can be 
thought of as radiating in the forward direction at freq. �max by spontaneous 

emission. Addition of a co-traveling EM wave of the same frequency provides the 
possibility of interaction and stimulated emission and growth of the wave.



  

 If a plane wave of monochromatic EM radiation is incident
On a free charged particle, the particle will be accelerated
and so emit radiation�scattering of the incident radiation.

14.8 Thomson Scattering of Radiation 
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 Thomson formula is for scattering of radiation 
by a free charge, and is appropriate for the 
scattering of x-rays by electrons or �-rays
by protons.

 The Thomson cross section is equal to 
0.665×10-24 cm2 for electrons.

 e2/mc2=2.82×10-13cm is called the classical 

electron radius since a classical distribution of 

charge totaling the electronic charge must have 
a radius of this order if its electrostatic self-energy 
is to equal the electron mass.

 The classical Thomson formula is valid only at low frequencies where the 
momentum of the incident photon can be ignored.

 When the photon's momentum 7�/c becomes comparable to or larger than mc, 

modifications occur�quantum-mechanical effects.

The energy or momentum of the scattered photon is less than the incident 
energy because the charged particle recoils during the collision.
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 (k'/k)2 comes entirely from the phase space. Its presence causes the differential 

cross section to decrease relative to the Thomson result at large angles.

 For protons the departures from the Thomson formula occur at 7�>100 MeV. 

This is far below the critical energy 7�~Mc2~1GeV.

 The reason is that a proton is not a point particle but having a spread-out charge 
distribution by the strong interactions.
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