Chapter Id Radiation by Moving Charges

14.1 Liénard-Wiechert Potentials and Fields for a Point Charge

- $\vec{A}(\vec{x})=\frac{4 \pi}{c} \int D_{r}\left(\vec{x}-\vec{x}^{\prime}\right) \vec{J}\left(\vec{x}^{\prime}\right) \mathrm{d}^{4} x^{\prime} \quad \Leftarrow$
no incoming fields
$D_{r}\left(\vec{x}-\vec{x}^{\prime}\right)$: the retarded Green function

$$
=2 e \int \vec{U}(\tau) \theta\left[x_{0}-r_{0}(\tau)\right] \delta\left[(\vec{x}-\vec{r}(\tau))^{2}\right] \mathrm{d} \tau \underset{\text { Time }}{\Leftarrow} \vec{J}=e c \int \vec{U} \delta^{(4)}\left[\vec{x}^{\prime}-\vec{r}\right] \mathrm{d} \tau
$$

- The integral gives a contribution only (1) $\tau=\tau_{0} \Leftarrow\left[\vec{x}-\vec{r}\left(\tau_{0}\right)\right]^{2}=0$ the light-cone condition
(2) $x_{0}>r_{0}\left(\tau_{0}\right)$ the retardation requirement
- The Green function is different from 0 only on the backward light cone of the observation point.
- The world line of the particle intersects the light cone at 2 points, one earlier and one later than x_{0}. The earlier point is the only part of the path that contributes to the fields at x^{α}.

$$
\delta\left[(\vec{x}-\vec{r}(\tau))^{2}\right]=\frac{\delta[\vec{x}-\vec{r}(\tau)]}{2|[\vec{x}-\vec{r}(\tau)] \cdot \vec{U}(\tau)|} \Leftarrow \delta[f(x)]=\sum \frac{\left.\delta\left(x-x_{i}\right)\right\rangle}{|\mathrm{d} f / \mathrm{d} x|_{x=x_{i}}}
$$

$\Rightarrow \vec{A}(\vec{x})=\left.\frac{e \vec{U}(\tau)}{\vec{U} \cdot[\vec{x}-\vec{r}(\tau)]}\right|_{\tau=\tau_{0}} \quad$ Lienard - Wiechert Potentials

- $\vec{U} \cdot(\vec{x}-\vec{r})=U_{0}\left[x_{0}-r_{0}\left(\tau_{0}\right)\right]-\mathbf{U} \cdot\left[\mathbf{x}-\mathbf{r}\left(\tau_{0}\right)\right]$

$$
=\gamma c R-\gamma \mathbf{v} \cdot \mathbf{n} R=\gamma c R(1-\boldsymbol{\beta} \cdot \mathbf{n}) \Leftarrow x_{0}-r_{0}\left(\tau_{0}\right)=\left|\mathbf{x}-\mathbf{r}\left(\tau_{0}\right)\right| \equiv R
$$

$$
\Rightarrow \Phi(\mathbf{x}, t)=\left[\frac{e}{(1-\boldsymbol{\beta} \cdot \mathbf{n}) R}\right]_{\mathrm{ret}}, \quad \mathbf{A}(\mathbf{x}, t)=\left[\frac{e \boldsymbol{\beta}}{(1-\boldsymbol{\beta} \cdot \mathbf{n}) R}\right] \in \begin{gathered}
{[]_{\mathrm{ret}}: \text { evaluated at the }} \\
\mathrm{retarded} \text { time } \tau_{0,} \text { with } \\
r_{0}\left(\tau_{0}\right)=x_{0}-R
\end{gathered}
$$

$$
r_{0}\left(\tau_{0}\right)=x_{0}-R
$$

$\Rightarrow \quad \Phi(\mathbf{x}, t) \rightarrow \frac{e}{R}, \quad \mathbf{A}(\mathbf{x}, t)=\frac{e \mathbf{v}}{c R}$ for $\beta \rightarrow 0 \quad$ nonrelativistic motion

- $\partial^{\alpha} \delta\left[(\vec{x}-\vec{r}(\tau))^{2}\right]=-\frac{x^{\alpha}-r^{\alpha}}{\vec{U} \cdot(\vec{x}-\vec{r})} \frac{\mathrm{d}}{\mathrm{d} \tau} \delta\left[(\vec{x}-\vec{r}(\tau))^{2}\right] \Leftrightarrow \partial^{\alpha} \delta(f)=\partial^{\alpha} f \frac{\mathrm{~d} \tau}{\mathrm{~d} f} \frac{\mathrm{~d}}{\mathrm{~d} \tau} \delta(f)$
$\Rightarrow \quad \partial^{\alpha} A^{\beta}=2 e \int U^{\beta}(\tau) \theta\left[x_{0}-r_{0}(\tau)\right] \partial^{\alpha} \delta\left[(\vec{x}-\vec{r}(\tau))^{2}\right] \mathrm{d} \tau \quad \boxtimes \partial^{\alpha} \theta$ has no contribution

$$
=2 e \int \theta\left[x_{0}-r_{0}(\tau)\right] \delta\left[(\vec{x}-\vec{r}(\tau))^{2}\right] \frac{\mathrm{d}}{\mathrm{~d} \tau} \frac{\left(x^{\alpha}-r^{\alpha}\right) U^{\beta}}{\vec{U} \cdot(\vec{x}-\vec{r})} \mathrm{d} \tau
$$

$\Rightarrow \quad F^{\alpha \beta}=\frac{e}{\vec{U} \cdot(\vec{x}-\vec{r})} \frac{\mathrm{d}}{\mathrm{d} \tau} \frac{\left(x^{\alpha}-r^{\alpha}\right) U^{\beta}-\left(x^{\beta}-r^{\beta}\right) U^{\alpha}}{\vec{U} \cdot(\vec{x}-\vec{r})}$

- $\vec{U}=(\gamma c, \gamma c \boldsymbol{\beta}) \Rightarrow \frac{\mathrm{d}}{\mathrm{d} \tau} \vec{U}=\left[c \gamma^{4} \boldsymbol{\beta} \cdot \dot{\boldsymbol{\beta}}, c \gamma^{2} \dot{\boldsymbol{\beta}}+c \gamma^{4}(\boldsymbol{\beta} \cdot \dot{\boldsymbol{\beta}}) \boldsymbol{\beta}\right] \Leftarrow \dot{\boldsymbol{\beta}}=\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\beta}$
$\vec{x}-\vec{r}=(R, R \mathbf{n}), \quad \frac{\mathrm{d}}{\mathrm{d} \tau}[\vec{U} \cdot(\vec{x}-\vec{r})]=-c^{2}+(\vec{x}-\vec{r}) \cdot \frac{\mathrm{d}}{\mathrm{d} \tau} \vec{U}$
$\Rightarrow \quad \mathbf{E}(\mathbf{x}, t)=e \frac{\mathbf{n}-\boldsymbol{\beta}}{\left.\gamma^{2}(1-\boldsymbol{\beta} \cdot \mathbf{n})^{3} R^{2}\right|_{\mathrm{ret}}}+\left.\frac{e}{c} \frac{\mathbf{n} \times((\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}})}{(1-\boldsymbol{\beta} \cdot \mathbf{n})^{3} R}\right|_{\mathrm{ret}} \quad, \quad \mathbf{B}=\mathbf{n} \times\left.\mathbf{E}\right|_{\mathrm{ret}}$
- The velocity fields are static fields falling off as R^{-2}, the acceleration fields are radiation fields, $\mathbf{E} \& \mathbf{B}$ being transverse to the radius vector and varying as R^{-1}.
- $\vec{U}=\mathrm{const} \quad \Rightarrow \quad F^{\alpha \beta}=\left.e c^{2} \frac{\left(x^{\alpha}-r^{\alpha}\right) U^{\beta}-\left(x^{\beta}-r^{\beta}\right) U^{\alpha}}{[\vec{U} \cdot(\vec{x}-\vec{r})]^{3}}\right|_{\tau=\tau_{0}} \quad \Rightarrow \quad$ Sec. 11.10
- $\overline{P^{\prime} Q}=R \beta \cos \theta=\boldsymbol{\beta} \cdot R \mathbf{n}, \quad \overline{O Q}=R(1-\boldsymbol{\beta} \cdot \mathbf{n}), \quad b=R \sin \theta$

$$
\Rightarrow \quad R^{2}(1-\boldsymbol{\beta} \cdot \mathbf{n})^{2}=r^{2}-\overline{P Q}^{2}=r^{2}-(R \beta \sin \theta)^{2}=b^{2}+v^{2} t^{2}-b^{2} \beta^{2}=\gamma^{-2} b^{2}+v^{2} t^{2}
$$

$$
\Rightarrow \quad E_{2}=\frac{e \gamma b}{\left(b^{2}+\gamma^{2} v^{2} t^{2}\right)^{3 / 2}}=\left.\frac{e b}{\gamma^{2}(1-\boldsymbol{\beta} \cdot \mathbf{n})^{3} R^{3}}\right|_{\mathrm{ret}} \quad=\begin{aligned}
& \text { the transverse compo } \\
& \text { of the velocity field }
\end{aligned}
$$

- The other components of \mathbf{E} and \mathbf{B} come out similarly.

14.2 Total Power Radiated by an Accelerated Charge:

 Larmor's Formula and Its Relativistic Generalization$$
\begin{aligned}
& \left.\Omega \beta \ll 1 \Rightarrow \quad \mathbf{E}_{a} \simeq \frac{e}{c} \frac{\mathbf{n} \times(\mathbf{n} \times \dot{\boldsymbol{\beta}})}{R}\right|_{\text {ret }} \Rightarrow \quad \mathbf{S}=\frac{c}{4 \pi} \mathbf{E} \times \mathbf{B} \simeq \frac{c}{4 \pi} E_{a}^{2} \mathbf{n} \\
& \Rightarrow \quad \frac{\mathrm{~d} P}{\mathrm{~d} \Omega} \simeq \frac{c}{4 \pi} R^{2} E_{a}^{2}=\frac{e^{2}}{4 \pi c}|\mathbf{n} \times(\mathbf{n} \times \dot{\boldsymbol{\beta}})|^{2}=\frac{e^{2}}{4 \pi c^{3}} \dot{v}^{2} \sin ^{2} \Theta \\
& \Rightarrow \quad P=\frac{2}{3} \frac{e^{2}}{c^{3}} \dot{v}^{2} \Leftrightarrow \begin{array}{l}
\text { energy flux by } \\
\text { Poynting vector } \\
\text { nonrelativistic, accelerated charge }
\end{array} \\
& \text { the radiation is polarized in the plane of dv/d } t \text { and } \mathbf{n} . \\
& \text { - Larmor's formula can be generalized by arguments about } \\
& \text { covariance under Lorentz transformations to yield a result } \\
& \text { that is valid for arbitrary velocities of the charge. }
\end{aligned}
$$

- Radiated EM energy behaves like the $0^{\text {th }}$ component of a 4 -vector, so the power is a Lorentz invariant.
- find a Lorentz invariant that involves only $\boldsymbol{\beta}$ and $\mathrm{d} \boldsymbol{\beta} / \mathrm{d} t$ and reduces to Larmor's formula for $\beta \ll 1$, then we have the desired generalization. The result is unique.
- $P=\frac{2}{3} \frac{e^{2}}{c^{3}} \dot{v}^{2}=\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}} \frac{\mathrm{~d} \mathbf{p}}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} \mathbf{p}}{\mathrm{~d} t} \Rightarrow P=-\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}} \frac{\mathrm{~d} \vec{p}}{\mathrm{~d} \tau} \cdot \frac{\mathrm{~d} \vec{p}}{\mathrm{~d} \tau}(1) \Leftarrow$ generalization
$-\frac{\mathrm{d} \vec{p}}{\mathrm{~d} \tau} \cdot \frac{\mathrm{~d} \vec{p}}{\mathrm{~d} \tau}=\left(\frac{\mathrm{d} \mathbf{p}}{\mathrm{d} \tau}\right)^{2}-\frac{1}{c^{2}}\left(\frac{\mathrm{~d} E}{\mathrm{~d} \tau}\right)^{2}=\left(\frac{\mathrm{d} \mathbf{p}}{\mathrm{d} \tau}\right)^{2}-\beta^{2}\left(\frac{\mathrm{~d} p}{\mathrm{~d} \tau}\right)^{2} \Leftarrow \begin{aligned} & E=\gamma m c^{2,} \mathbf{p}=\gamma m \mathbf{v} \\ & \mathrm{~d} E=m \gamma^{3} v \mathrm{~d} v, \mathrm{~d} p=m \gamma^{3} \mathrm{~d} v\end{aligned}$
$\Rightarrow \quad P=\frac{2}{3} \frac{e^{2}}{c} \gamma^{6}\left[\dot{\boldsymbol{\beta}}^{2}-(\boldsymbol{\beta} \times \dot{\boldsymbol{\beta}})^{2}\right] \quad$ the Lienard result $\quad \Leftarrow \mathrm{d} t=\gamma \mathrm{d} \tau$
- the expression for radiated power can be used for charged-particle accelerators. Radiation losses are a limiting factor in the maximum practical energy attainable.
- For a given applied force, the radiated power (1) depends inversely on mass ${ }^{2}$ of the particle. Consequently these radiative effects are largest for electrons.
- In a linear accelerator the motion is 1 d

$$
\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}}\left[\left(\frac{\mathrm{~d} p}{\mathrm{~d} \tau}\right)^{2}-\beta^{2}\left(\frac{\mathrm{~d} p}{\mathrm{~d} \tau}\right)^{2}\right] \Leftarrow P=\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}}\left(\frac{\mathrm{~d} p}{\mathrm{~d} t}\right)^{2}=\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}}\left(\frac{\mathrm{~d} E}{\mathrm{~d} x}\right)^{2} \Leftarrow \frac{\mathrm{~d} E}{\mathrm{~d} p}=\frac{\mathrm{d} x}{\mathrm{~d} t}
$$

for linear motion the power radiated depends only on the external forces that determine $\mathrm{d} E / \mathrm{d} x$, not on the actual energy or momentum of the particle.

- $\frac{\text { the radiated power }}{\text { power by external sources }}=\frac{P}{\mathrm{~d} E / \mathrm{d} t}=\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}} \frac{1}{v} \frac{\mathrm{~d} E}{\mathrm{~d} x} \rightarrow \frac{2}{3} \frac{e^{2} / m c^{2}}{m c^{2}} \frac{\mathrm{~d} E}{\mathrm{~d} x}$ for $\beta \rightarrow 1$
- the radiation loss in an electron linear accelerator is unimportant unless the gain in energy is of the order of $m c^{2} /\left(e^{2} / m c^{2}\right) \sim 2 \times 10^{14} \mathrm{MeV} / \mathrm{m}$. So radiation losses are negligible in linear accelerators, whether for electrons or heavier particles.
- In circular accelerators the momentum changes rapidly in direction as the particle rotates, but the change in energy per revolution is small
$\Rightarrow\left|\frac{\mathrm{d} \mathbf{p}}{\mathrm{d} \tau}\right|=\gamma \omega|\mathbf{p}| \gg \frac{1}{c} \frac{\mathrm{~d} E}{\mathrm{~d} \tau} \Rightarrow P \approx \frac{2}{3} \frac{e^{2}}{m^{2} c^{3}} \gamma^{2} \omega^{2}|\mathbf{p}|^{2}=\frac{2}{3} \frac{e^{2} c}{\rho^{2}} \gamma^{4} \beta^{4} \quad \Leftarrow \quad \omega=\frac{c \beta}{\rho}$
$\Rightarrow \quad \frac{\text { radiative-energy loss }}{\text { revolution }}=\delta E \approx \frac{2 \pi \rho}{c \beta} P=\frac{4 \pi}{3} \frac{e^{2}}{\rho} \gamma^{4} \beta^{3} \rightarrow 10^{-1} \frac{[E(\mathrm{GeV})]^{4}}{\rho(\text { meter })}$ for $\beta \rightarrow 1$
$\rho \simeq 1$ meter , $E_{\max } \simeq 0.3 \mathrm{GeV} \Rightarrow \delta E_{\max }=1 \mathrm{keV} /$ revolution
This is less than, but not negligible to, the energy gain of a few KVs/turn.
- At higher energies the limitation on available radiofrequency power to overcome the radiation loss becomes a dominant consideration.
- The power radiated in circular electron accelerators can be expressed numerically as

$$
P(\text { watts })=10^{6} \delta E(\mathrm{Mev}) J(\mathrm{amp})
$$

14.3 Angular Distribution of Radiation Emitted by an Accelerated Charge

- For an accelerated charge with $\beta \ll 1$, the radial component of Poynting's vector

$$
[\mathbf{S} \cdot \mathbf{n}]_{\mathrm{ret}} \simeq \frac{e^{2}}{4 \pi c}\left|\frac{\mathbf{n} \times[(\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{R(1-\mathbf{n} \cdot \boldsymbol{\beta})^{3}}\right|_{\mathrm{ret}}^{2} \Leftarrow \mathbf{S} \simeq \frac{c}{4 \pi} \mathbf{E}_{a} \times \mathbf{B}_{a}=\frac{c}{4 \pi}\left|\mathbf{E}_{a}\right|^{2} \mathbf{n}
$$

energy/area/time at an observation point at t of radiation emitted at $t^{\prime}=t-R\left(t^{\prime}\right) / c$.

- Two types of relativistic effect:
(1) the effect of the spatial relationship between $\boldsymbol{\beta} \& \dot{\boldsymbol{\beta}}$, which determines the angular distribution.
(2) The relativistic effect from the transformation from the rest frame to the observer's frame and showing itself by the factors (1- $\boldsymbol{\beta} \cdot \mathbf{n}$) in the denominator.
- For ultrarelativistic particles effect (2) dominates the whole angular distribution.
- to calculate the energy radiated during a finite period [T_{1}, T_{2}] of acceleration, $E=\int_{t=T_{1}+R\left(T_{1}\right) / c}^{t=T_{2}+R\left(T_{2}\right) / c}[\mathbf{S} \cdot \mathbf{n}]_{\mathrm{ret}} \mathrm{d} t=\int_{t^{\prime}=T_{1}}^{t^{\prime}=T_{2}} \mathbf{S} \cdot \mathbf{n} \frac{\mathrm{~d} t}{\mathrm{~d} t^{\prime}} \mathrm{d} t^{\prime} \Rightarrow \mathbf{S} \cdot \mathbf{n} \frac{\mathrm{d} t}{\mathrm{~d} t^{\prime}}: \begin{aligned} & \text { (power radiated)/area } \\ & \text { in the charge's time }\end{aligned}$
$\Rightarrow \quad \frac{\text { power radiated }}{\text { solid angle }}=\frac{\mathrm{d} P\left(t^{\prime}\right)}{\mathrm{d} \Omega}=R^{2} \mathbf{S} \cdot \mathbf{n} \frac{\mathrm{~d} t}{\mathrm{~d} t^{\prime}}=R^{2} \mathbf{S} \cdot \mathbf{n}(1-\boldsymbol{\beta} \cdot \mathbf{n})=\frac{e^{2}|\mathbf{n} \times[(\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{4 \pi c(1-\mathbf{n} \cdot \boldsymbol{\beta})^{5}}$
- If the charge is accelerated only for a short time during which $\boldsymbol{\beta} \& \dot{\boldsymbol{\beta}}$ basically constant, and the observation point is far away away that $\mathbf{n} \& R$ change negligibly during the interval, then the power/(solid angle) is proportional to the angular distribution of the energy radiated.
- $\boldsymbol{\beta} \| \dot{\boldsymbol{\beta}}$ for a linear motion $\Rightarrow \frac{\mathrm{d} P\left(t^{\prime}\right)}{\mathrm{d} \Omega}=\frac{e^{2} \dot{v}^{2}}{4 \pi c^{3}} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}} \Leftarrow \cos \theta=\mathbf{n} \cdot \hat{\boldsymbol{\beta}}$
\Rightarrow Larmor's result for $\beta \ll 1$
- the angular distribution is tipped forward and increases in magnitude for $\beta \rightarrow 1 . \beta \simeq 0$
$\left.\beta \rightarrow 1 \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} \Omega}\right|_{\max } \propto \gamma^{8}$

$$
\theta_{\max }=\cos ^{-1} \frac{\sqrt{15 \beta^{2}+1}-1}{3 \beta} \rightarrow \frac{1}{2 \gamma}
$$

- For relativistic particles, $\theta_{\max } \sim \frac{\text { rest energy }}{\text { total energy }} \ll 1$ and the angular distribution is confined to a very narrow cone in the direction of motion.
$\theta \rightarrow 0 \Rightarrow \frac{\mathrm{~d} P\left(t^{\prime}\right)}{\mathrm{d} \Omega} \simeq \frac{8}{\pi} \frac{e^{2} \dot{v}^{2}}{c^{3}} \gamma^{8} \frac{\gamma^{2} \theta^{2}}{\left(1+\gamma^{2} \theta^{2}\right)^{5}}$
- The peak occurs at $\gamma \theta= \pm 1 / 2$, the half-power points at $\gamma \theta= \pm 0.23 \& \gamma \theta= \pm 0.91$.
- The rms angle of radiation in the relativistic limit $\theta_{\mathrm{rms}} \equiv \sqrt{\left\langle\theta^{2}\right\rangle}=\frac{1}{\gamma}=\frac{m c^{2}}{E}$ typical of the relativistic radiation patterns, regardless of the angle of $\boldsymbol{\beta} \& \dot{\boldsymbol{\beta}}$.
- The total power $P_{\text {linear }}\left(t^{\prime}\right)=\int \frac{\mathrm{d} P\left(t^{\prime}\right)}{\mathrm{d} \Omega} \mathrm{d} \Omega=\frac{2}{3} \frac{e^{2}}{c^{3}} \dot{v}^{2} \gamma^{6} \Rightarrow$ the Lienard result
- for a charge in instantaneously circular motion $\Rightarrow \boldsymbol{\beta} \perp \dot{\boldsymbol{\beta}}$

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{d} P\left(t^{\prime}\right)}{\mathrm{d} \Omega}=\frac{e^{2}}{4 \pi c^{3}} \frac{\dot{v}^{2}}{(1-\beta \cos \theta)^{3}}\left[1-\frac{\sin ^{2} \theta \cos ^{2} \phi}{\gamma^{2}(1-\beta \cos \theta)^{2}}\right] \tag{2}
\end{equation*}
$$

- In the relativistic limit, the same characteristic relativistic peaking at forward angles is present.

$$
\frac{\mathrm{d} P\left(t^{\prime}\right)}{\mathrm{d} \Omega}=\frac{2}{\pi} \frac{e^{2}}{c^{3}} \gamma^{6} \frac{\dot{v}^{2}}{\left(1+\gamma^{2} \theta^{2}\right)^{3}}\left[1-\frac{4 \gamma^{2} \theta^{2} \cos ^{2} \phi}{\left(1+\gamma^{2} \theta^{2}\right)^{2}}\right] \begin{aligned}
& \& \theta_{\mathrm{rms}}=\gamma^{-1} \\
& \text { for } \gamma \gg 1 \dot{\beta}
\end{aligned}
$$

- The total power $P_{\text {circular }}\left(t^{\prime}\right)=\frac{2}{3} \frac{e^{2}}{c^{3}} \dot{v}^{2} \gamma^{4}$

- For circular motion $\dot{\mathbf{p}}=\gamma m \dot{\mathbf{v}}=\mathbf{F} \Rightarrow P_{\text {circular }}\left(t^{\prime}\right)=\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}} \gamma^{2}\left(\frac{\mathrm{~d} \mathbf{p}}{\mathrm{~d} t}\right)^{2}=\gamma^{2} P_{\text {linear }}\left(t^{\prime}\right)$
- for a given magnitude of applied force the radiation emitted with a transverse acceleration is a factor of γ^{2} larger than with a parallel acceleration.

14.4 Radiation Emitted by a Charge in Arbitrary, Extremely Relativistic Motion

- In the case the radiation can be thought of as a coherent superposition of contributions coming from the components of acceleration \| \& \perp to the velocity.
- neglect the II -component part and approximate the radiation intensity with the \perp-component part alone because the radiation from the $I I$-component part is of order γ^{-2} compared to that from the \perp-component part.
- the radiation by a charged particle in arbitrary, extreme relativistic motion is approximately the same as that by a particle moving instantaneously along the arc of a circular path of radius of curvature

$$
\rho=\frac{v^{2}}{\dot{v}_{\perp}} \simeq \frac{c^{2}}{\dot{v}_{\perp}} \Rightarrow \frac{\mathrm{d} P\left(t^{\prime}\right)}{\mathrm{d} \Omega}=(2)
$$

a narrow cone or searchlight beam of radiation directed along the velocity vector of the charge.

- For a particle in arbitrary motion the observer will detect a short-time pulse (or a succession of such bursts if the particle is in periodic motion).

- $\Delta \theta \sim \frac{1}{\gamma} \Rightarrow d \sim \frac{\rho}{\gamma} \Rightarrow \Delta t \sim \frac{\rho}{\gamma v}$
$\Rightarrow \quad D=c \Delta t \sim \frac{\rho}{\gamma \beta} \quad \begin{aligned} & \text { pulse front's } \\ & \text { travelling distance }\end{aligned}$
$\Rightarrow \quad L=D-d=\frac{\rho}{\gamma \beta}-\frac{\rho}{\gamma} \simeq \frac{\rho}{2 \gamma^{3}} \Leftarrow$ the length of the pulse $\Rightarrow T=\frac{L}{c}$
- By analyzing the wave trains it implies that the spectrum of the radiation will contain appreciable frequency components up to a critical frequency

$$
\omega_{c} \sim \frac{c}{L} \sim \gamma^{3} \omega_{0} \quad(3) \Leftarrow \omega_{0}=\frac{c}{\rho} \text { the fundamental frequency }
$$

- a relativistic particle emits a broad spectrum of frequencies, up to γ^{3} times the fundamental frequency.
- 200 MeV synchrotron $\Rightarrow \gamma_{\max }=400, \omega_{0} \simeq 3 \times 10^{8} \mathrm{~s}^{-1} \Rightarrow \omega_{c} \sim 2 \times 10^{16} \mathrm{~s}^{-1}, \lambda_{c} \sim 10^{3} \AA$
- 10 GeV machine $\Rightarrow \gamma_{\max }=20000, \omega_{0} \simeq 3 \times 10^{6} \mathrm{~s}^{-1} \Rightarrow \omega_{c} \sim 2.4 \times 10^{19} \mathrm{~s}^{-1} \Rightarrow \begin{gathered}16 \mathrm{keV} \\ \text { x-ray }\end{gathered}$

14.5 Distribution in Frequency and Angle of Energy Radiated by Accelerated Charges: Basic Results

- For relativistic motion the radiated energy is over a wide range of frequencies. The frequency spectrum can be analyzed precisely \& quantitatively by the use of Parseval's theorem of Fourier analysis.
- Parseval's theorem: the sum/integral of the square of a function is equal to the sum/integral of the square of its transform, ie, the Fourier transform is unitary.
$\frac{\mathrm{d} P(t)}{\mathrm{d} \Omega}=|\mathbf{A}(t)|^{2} \Leftarrow \mathbf{A}(t)=\sqrt{\frac{c}{4 \pi}}[\mathfrak{R}(\mathbf{E})]_{\text {ret }} \Leftarrow \quad$ in the observer's time
$A(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathbf{A}(t) e^{i \omega t} \mathrm{~d} t \Leftrightarrow A(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathbf{A}(\omega) e^{-i \omega t} \mathrm{~d} \omega$
$\Rightarrow \quad \frac{\mathrm{d} W}{\mathrm{~d} \Omega}=\int \frac{\mathrm{d} P(t)}{\mathrm{d} \Omega} \mathrm{d} t=\int_{-\infty}^{\infty}|\mathbf{A}(t)|^{2} \mathrm{~d} t \quad \boxtimes \quad \delta\left(\omega-\omega^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\omega-\omega^{\prime}\right) t} \mathrm{~d} t$

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{A}^{*}\left(\omega^{\prime}\right) \cdot \mathbf{A}\left(\omega^{\prime}\right) e^{i\left(\omega^{\prime}-\omega\right) t} \mathrm{~d} \omega^{\prime} \mathrm{d} \omega \mathrm{~d} t=\int_{-\infty}^{\infty}|\mathbf{A}(\omega)|^{2} \mathrm{~d} \omega
$$

$$
=\int_{0}^{\infty} \frac{\mathrm{d}^{2} I(\omega, \mathbf{n})}{\mathrm{d} \omega \mathrm{~d} \Omega} \mathrm{~d} \omega \Leftarrow \frac{\mathrm{~d}^{2} I(\omega, \mathbf{n})}{\mathrm{d} \omega \mathrm{~d} \Omega}=|\mathbf{A}(\omega)|^{2}+|\mathbf{A}(-\omega)|^{2}
$$

$\Rightarrow \quad \frac{\mathrm{d}^{2} I(\omega, \mathbf{n})}{\mathrm{d} \omega \mathrm{d} \Omega}=2|\mathbf{A}(\omega)|^{2} \quad$ if $\quad \mathbf{A}(t) \in \mathbb{R} \quad \Leftarrow \quad \mathbf{A}(-\omega)=\mathbf{A}^{*}(\omega)$

- $\mathbf{A}(\omega)=\frac{e}{\sqrt{8 \pi^{2} c}} \int_{-\infty}^{\infty}\left[\frac{\mathbf{n} \times((\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}})}{(1-\mathbf{n} \cdot \boldsymbol{\beta})^{3}}\right]_{\mathrm{ret}} e^{i \omega t} \mathrm{~d} t$ for an accelerated charge $\Leftrightarrow(0)$

$$
\begin{aligned}
& =\frac{e}{\sqrt{8 \pi^{2} c}} \int_{-\infty}^{\infty} \frac{\mathbf{n} \times[(\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\mathbf{n} \cdot \boldsymbol{\beta})^{2}} e^{i \omega\left[t^{\prime}+R\left(t^{\prime}\right) c\right]} \mathrm{d} t^{\prime} \Leftarrow t=t^{\prime}+\frac{R\left(t^{\prime}\right)}{c} \\
& =\frac{e}{\sqrt{8 \pi^{2} c}} e^{i \omega x / c} \int_{-\infty}^{\infty} \frac{\mathbf{n} \times[(\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\mathbf{n} \cdot \boldsymbol{\beta})^{2}} e^{i \omega[t-\mathbf{n} \cdot \mathbf{r}(t) / c]} \mathrm{d} t \Leftarrow R\left(t^{\prime}\right) \approx x-\mathbf{n} \cdot \mathbf{r}\left(t^{\prime}\right)
\end{aligned}
$$

$$
\Rightarrow \quad \frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}=\frac{e^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} \frac{\mathbf{n} \times[(\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\mathbf{n} \cdot \boldsymbol{\beta})^{2}} e^{i \omega[t-\mathbf{n} \cdot \mathbf{r}(t) / c]} \mathrm{d} t\right|_{\boldsymbol{r}(}^{2}
$$

given $\mathbf{r}(t) \Rightarrow \boldsymbol{\beta}(t) \& \dot{\boldsymbol{\beta}}(t) \Rightarrow \frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}$ $\frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}=2 \sum\left|\mathbf{A}_{j}(\omega)\right|^{2} \quad$ for many particle

- $\frac{\mathbf{n} \times[(\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\mathbf{n} \cdot \boldsymbol{\beta})^{2}}=\frac{\mathrm{d}}{\mathrm{d} t} \frac{\mathbf{n} \times(\mathbf{n} \times \boldsymbol{\beta})}{1-\mathbf{n} \cdot \boldsymbol{\beta}}$
$\Rightarrow \quad \frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}=\frac{e^{2} \omega^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} \mathbf{n} \times(\mathbf{n} \times \boldsymbol{\beta}) e^{i \omega[t-\mathbf{n} \cdot \mathbf{r}(t) c \mathrm{c}]} \mathrm{d} t\right|^{2}$
- (4) is correct in all circumstances. For the acceleration being different from zero for $T_{1} \leq t \leq T_{2}$, by adding \& subtracting the integrals over the times for $v=$ const, (3) will give right answer.
- In processes like beta decay, involving the almost instantaneous halting or setting in motion of charges, extra care must be taken to specify each particle's velocity as a physically sensible function of time.
- the polarization of the radiation is given by the direction of the vector integral in each. The intensity of radiation of a fixed polarization can be obtained by the scalar product of the unit polarization vector with the vector integral.
- For a number of charges

$$
\begin{aligned}
& e \boldsymbol{\beta} e^{-i \omega \mathbf{n} \cdot \mathbf{r}(t) / c} \rightarrow \sum_{j=1}^{N} e_{j} \boldsymbol{\beta}_{j} e^{-i \omega \mathbf{n} \cdot \mathbf{r}_{j}(t) / c} \rightarrow \frac{1}{c} \int \boldsymbol{J}(\mathbf{x}, t) e^{-i \omega \mathbf{n} \cdot \mathbf{x} / c} \mathrm{~d}^{3} x \\
& \Rightarrow \quad \frac{\mathrm{~d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}=\frac{\omega^{2}}{4 \pi^{2} c^{3}}\left|\iint \mathbf{n} \times[\mathbf{n} \times \boldsymbol{J}(\mathbf{x}, t)] e^{i \omega(t-\mathbf{n} \cdot \mathbf{x} / c)} \mathrm{d}^{3} x \mathrm{~d} t\right|^{2}
\end{aligned}
$$

a result that can be obtained from the direct solution of the inhomogeneous wave eqn for the vector potential.

14.6 Frequency Spectrum of Radiation Emitted by a Relativistic

 Charged Particle in Instantaneously Circular Motion- If the duration of the pulse is very short, it is necessary to know the velocity \& position over only a small arc of the trajectory.
- $\mathbf{n} \times(\mathbf{n} \times \boldsymbol{\beta})=\beta\left[\boldsymbol{\epsilon}_{\perp} \cos \frac{v t}{\rho} \sin \theta-\boldsymbol{\epsilon}_{\|} \sin \frac{v t}{\rho}\right]$

$$
1-\frac{\mathbf{n} \cdot \mathbf{r}(t)}{c}=t-\frac{\rho}{c} \sin \frac{\nu t}{\rho} \cos \theta
$$

$$
\simeq \frac{1+\gamma^{2} \theta^{2}}{2 \gamma^{2}} t+\frac{c^{2}}{6 \rho^{2}} t^{3} \Leftarrow \begin{align*}
& \beta \rightarrow 1-\gamma^{-2} / 2 \tag{3}\\
& \theta \leftarrow \theta_{\mathrm{rms}}=\gamma^{-1}
\end{align*}
$$

$\Rightarrow \frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}=\frac{e^{2} \omega^{2}}{4 \pi^{2} c}\left|\boldsymbol{\epsilon}_{\perp} A_{\perp}(\omega)-\boldsymbol{\epsilon}_{\|} A_{\|}(\omega)\right|^{2} \Leftarrow$
where

$$
A_{\|}(\omega) \simeq \frac{c}{\rho} \int_{-\infty}^{\infty} t e^{i \omega\left(\frac{1+\gamma^{2} \theta^{2}}{2 \gamma^{2}} t+\frac{c^{2} t^{3}}{6 \rho^{3}}\right.} \mathrm{d} t=\frac{\rho}{c}\left(\gamma^{-2}+\theta^{2}\right) \int_{-\infty}^{\infty} x e^{i \xi \frac{3 x+x^{3}}{2}} \mathrm{~d} x
$$

$$
A_{\perp}(\omega) \simeq \theta \int_{-\infty}^{\infty} e^{i \omega\left[\frac{1+\gamma^{2} \theta^{2}}{2 \gamma^{2}} t+\frac{c^{2} t^{3}}{6 \rho^{2}}\right]} \mathrm{d} t=\frac{\rho}{c} \theta \sqrt{\gamma^{-2}+\theta^{2}} \int_{-\infty}^{\infty} e^{i \xi \frac{3 x+x^{3}}{2}} \mathrm{~d} x
$$

where $x=\frac{c t}{\rho \sqrt{\gamma^{-2}+\theta^{2}}}, \quad \xi=\frac{\omega \rho}{3 c}\left(\gamma^{-2}+\theta^{2}\right)^{3 / 2}$

$$
\begin{align*}
& \int_{0}^{\infty} x \sin \frac{\xi\left(3 x+x^{3}\right)}{2} \mathrm{~d} x=\frac{1}{\sqrt{3}} K_{2 / 3}(\xi), \quad \int_{0}^{\infty} \cos \frac{\xi\left(3 x+x^{3}\right)}{2} \mathrm{~d} x=\frac{1}{\sqrt{3}} K_{1 / 3}(\xi) \\
& \Rightarrow \quad \frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}=\frac{e^{2} \omega^{2} \rho^{2}}{3 \pi^{2} c^{3}} \frac{\left(1+\gamma^{2} \theta^{2}\right)^{2}}{\gamma^{4}}\left[\begin{array}{cc}
\left.K_{2 / 3}^{2}(\xi) \quad+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right] \\
\text { radiation polarized } \| & \text { radiation polarized } \perp
\end{array}\right. \tag{5}\\
& \begin{array}{l}
\text { the plane of the orbit } \\
\text { the plane of the orbit }
\end{array} \\
& \Rightarrow \frac{\mathrm{d} I}{\mathrm{~d} \Omega}=\int_{0}^{\infty} \frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega} \mathrm{~d} \omega=\frac{7}{16} \frac{e^{2}}{\rho} \frac{\gamma^{5}}{\left(1+\gamma^{2} \theta^{2}\right)^{5 / 2}}\left[1+\frac{5}{7} \frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}}\right] \Leftarrow(2)
\end{align*}
$$

$\Rightarrow \quad I=I_{\|}+I_{\perp} \Leftarrow I_{\|} \approx 7 I_{\perp} \Rightarrow \begin{aligned} & \text { The radiation from a relativistically moving charg } \\ & \text { is very strongly polarized in the plane of motion. }\end{aligned}$

- $I \rightarrow 0$ as $\xi \gg 1 \Leftarrow$ large θ :the radiation is largely confined to the plane of the motion, being more confined the higher the frequency relative to c / ρ.
- If ω gets too large, ξ will be large at all angles. Then there will be negligible total energy emitted at that frequency.
- critical frequency: $\omega_{c}=\frac{3}{2} \gamma^{3} \frac{c}{\rho}=\frac{3}{2}\left(\frac{E}{m c^{2}}\right)^{3} \frac{c}{\rho} \simeq(4) \Leftarrow \xi\left(\omega_{c}, \theta=0\right)=\frac{1}{2}$

$$
\Rightarrow \quad \omega_{c}=n_{c} \omega_{0} \quad \Rightarrow \quad n_{c}=3 \gamma^{3} / 2 \Leftrightarrow \quad \omega_{0}=c / \rho
$$

critical harmonic frequency harmonic number fundamental harmonic frequency
$\left.\frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}\right|_{\theta=0}=\left[\begin{array}{ll}\frac{e^{2}}{c}\left[\frac{\Gamma(3 / 2)}{\pi}\right]^{2}\left(\frac{3}{4}\right)^{1 / 3}\left(\frac{\omega \rho}{c}\right)^{2 / 3} & \text { for } \omega \ll \omega_{c} \\ \frac{3}{4 \pi} \frac{e^{2}}{c} \gamma^{2} \frac{\omega}{\omega_{c}} e^{-\omega / \omega_{c}} & \text { for } \omega \gg \omega_{c}\end{array}\right.$
the spectrum at $\theta=0$ increases with frequency as $\omega^{2 / 3}$ below the critical frequency, reaches a maximum near ω_{c}, drops exponentially to zero above that frequency.

- Estimate the spread in angle at a fixed frequency by finding $\theta_{c} \underset{1 / 3}{\Leftarrow} \xi\left(\theta_{c}\right) \simeq \xi(0)+1$

$$
\omega \ll \omega_{c} \Rightarrow \xi\left(\theta_{c}\right) \simeq 1 \Rightarrow \theta_{c} \simeq\left(\frac{3 c}{\omega \rho}\right)^{1 / 3}=\frac{1}{\gamma}\left(\frac{2 \omega_{c}}{\omega}\right)^{1 / 3}=\left(\frac{2 \omega_{c}}{\omega}\right)^{1 / 3} \theta_{\mathrm{rms}}>\theta_{\mathrm{rms}}
$$

the low-freq. components are emitted at much wider angles than the average.

- $\omega>\omega_{c} \quad \Rightarrow \quad \xi\left(\theta_{c}\right) \gg 1$
$\left.\Rightarrow \quad \frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega} \simeq \frac{\mathrm{~d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}\right|_{\theta=0} e^{-3 \omega \gamma^{2} \theta^{2} / 2 \omega_{c}}$
$\Rightarrow \quad \theta_{c} \simeq \frac{1}{\gamma} \sqrt{\frac{2 \omega_{c}}{3 \omega}} \Leftarrow \frac{3 \omega \gamma^{2} \theta_{c}^{2}}{2 \omega_{c}}=1$
the high-freq. components are within an angular range much smaller than average.

- for the low-frequency range $\omega \ll \omega_{c}$
$\frac{\mathrm{d} I}{\mathrm{~d} \omega}=\left.2 \pi \int_{-\pi / 2}^{\pi / 2} \frac{\mathrm{~d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega} \mathrm{~d} \sin \theta \simeq 2 \pi \int_{-\infty}^{\infty} \frac{\mathrm{d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega} \mathrm{~d} \theta \sim 2 \pi \theta_{c} \frac{\mathrm{~d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}\right|_{\theta=0} \sim \frac{e^{2}}{c}\left(\frac{\omega \rho}{c}\right)^{\frac{1}{3}}$ the spectrum increases as $\omega^{1 / 3}$, and is very broad, flat at frequencies below ω_{c}.
- for the high-frequency range $\omega \gg \omega_{c} \Rightarrow \frac{\mathrm{~d} I}{\mathrm{~d} \omega} \simeq \frac{e^{2}}{c} \gamma \sqrt{\frac{3 \pi}{2} \frac{\omega}{\omega_{c}}} e^{-\omega / \omega_{c}}$
- A proper integration gives $\frac{\mathrm{d} I}{\mathrm{~d} \omega}=\sqrt{3} \frac{e^{2}}{c} \gamma \frac{\omega}{\omega_{c}} \int_{\omega / \omega_{c}}^{\infty} K_{5 / 3}(x) \mathrm{d} x$

- The radiation represented by (5) \& (6) is called synchrotron radiation.
- For periodic circular motion the spectrum is actually discrete, being composed of frequencies that are integral multiples of the fundamental frequency $\omega_{0}=c / \rho$.
- Since the charged particle repeats its motion at a rate of $c / 2 \pi \rho \mathrm{rev} / \mathrm{sec}$, it is convenient to talk about the angular distribution of power radiated into the nth multiple of ω_{0} instead of the energy radiated/frequency interval/particle.

$$
\frac{\mathrm{d} P_{n}}{\mathrm{~d} \Omega}=\left.\frac{1}{2 \pi} \frac{c^{2}}{\rho^{2}} \frac{\mathrm{~d}^{2} I}{\mathrm{~d} \omega \mathrm{~d} \Omega}\right|_{\omega=n \omega_{0}}, \quad P_{n}=\left.\frac{1}{2 \pi} \frac{c^{2}}{\rho^{2}} \frac{\mathrm{~d} I}{\mathrm{~d} \omega}\right|_{\omega=n \omega_{0}}
$$

- Due to the broad frequency distribution covering the visible, UV, x-ray regions, synchrotron radiation is a useful tool for studies in condensed matter \& biology.
- electrons in the Crab nebula with energies ranging up to $10^{13} \mathrm{eV}$ are emitting synchrotron radiation while moving in circular or helical orbits in a $\mathbf{B} \sim 10^{-4}$ gauss.
- The radio emission at $\sim 10^{3} \mathrm{MHz}$ from Jupiter comes from energetic electrons trapped in Van Allen belts at distances up to 100 radii from Jupiter's surface.
- $B \sim 1$ gauss , $\quad E_{e} \sim 5 \mathrm{MeV} \Rightarrow \quad \rho \sim 100-200$ meters, $\omega_{0} \sim 2 \times 10^{6} / \mathrm{s}$
$\Rightarrow 10^{3}$ significant harmonics radiated
- (number of photons)/frequency is to divide the intensity distribution by $\hbar \omega$ $\frac{\mathrm{d} N}{\mathrm{~d}\left(\omega / \omega_{c}\right)}=\frac{I}{\hbar \omega_{c}} \frac{9 \sqrt{3}}{8 \pi} \int_{\omega / \omega_{c}}^{\infty} K_{5 / 3}(x) \mathrm{d} x \quad \Leftarrow \quad I=\frac{4 \pi e^{2} \gamma^{4}}{3 \rho} \quad \begin{aligned} & \text { total energy radiated } \\ & \text { per revolution }\end{aligned}$ $\Rightarrow \frac{\text { mean number of photons }}{(\text { revolution })(\text { particle })}=N=\frac{5 \pi}{\sqrt{3}} \gamma \alpha \Rightarrow \frac{\text { mean energy }}{\text { photon }}=\langle\hbar \omega\rangle=\frac{I}{N}=\frac{8}{15 \sqrt{3}} \hbar \omega_{c}$
$\Rightarrow \quad \omega_{c} \propto \gamma, \gamma(\mathrm{GeV})=O\left(10^{4}\right) \quad \Rightarrow \quad \lambda_{\text {fundamental }}=2 \pi \rho \sim$ hundred of meters
$\Rightarrow \quad \lambda_{\text {photon }} \sim 10^{-10}$ meter $\Rightarrow \mathrm{keV}$ x-ray

14.7 Undulators and Wigglers for Synchrotron Light Sources

- The magnetic properties of wigglers \& undulators make the electrons undergo special motion that results in the concentration of the radiation into a much more monochromatic spectrum or series of separated peaks.
- The essential idea of undulators and wigglers is that a moving relativistically charged particle is caused to move transversely to its general forward motion by magnetic fields that alternate periodically.
- The external magnetic fields induce small transverse oscillations in the motion; the associated accelerations cause radiation to be emitted.

A. Qualitative Features

$$
\begin{aligned}
& x \approx a\left(B_{\text {wiggler }}, E_{\text {particle }}\right) \sin \frac{2 \pi z}{\lambda_{0}} \\
& \Rightarrow \psi_{0}=\frac{\mathrm{d} x}{\mathrm{~d} z_{z=0}}=k_{0} a \Leftarrow k_{0}=\frac{2 \pi}{\lambda_{0}}
\end{aligned}
$$

$$
\text { period } T=\frac{\lambda_{0}}{\beta c} \Rightarrow k_{0, \text { real }}=\beta k_{0}
$$

$$
\text { for } \gamma \gg 1 \quad \Rightarrow \quad k_{0} \approx k_{0, \text { real }}
$$

- For $\gamma \gg 1$, the radiation is confined to a width $\Delta \theta=O(1 / \gamma)$ about the actual path.
- As the particle moves in its oscillatory path, the "searchlight" beam of radiation will flick back and forth about the forward direction.

(a) Wiggler $\left(\psi_{0} \gg \Delta \theta\right)$

- $v_{0}=\frac{\omega_{0}}{2 \pi}=\frac{c k_{0}}{2 \pi}=O(10 \mathrm{GHz})$ for $\lambda_{0}=O$ (centimeters) The phenomenon is very much as in an ordinary synchrotron with bunches spaced a few centimeters apart.
- The spectrum of radiation extends to frequencies about γ^{3} times the basic freq.

$$
\text { basic freq. } \Omega=\frac{c}{R} \Leftarrow R: \begin{gathered}
\text { effective radius } \\
\text { of curvature }
\end{gathered} \Rightarrow \quad R_{\min }=\frac{1}{k_{0}^{2} a}=\frac{\lambda_{0}}{2 \pi \psi_{0}}
$$

- The wiggler radiation spectrum is very much like the synchrotron radiation spectrum, with a fundamental frequency $\Omega, \Rightarrow \omega_{c}=\gamma^{3} \Omega \Leftarrow \Omega=2 \pi c \psi_{0} / \lambda_{0}$
- If the wiggler magnet structure has N periods, the intensity of radiation will be N times that for a single pass of a particle in the equivalent circular machine.
- $K \equiv \gamma \psi_{0} \quad \Rightarrow \quad K \gg 1$ for wiggler $\Rightarrow \omega_{c}=O\left(\gamma^{2} K \frac{2 \pi c}{\lambda_{0}}\right) \Leftarrow \lambda_{c}=O\left(\frac{\lambda_{0}}{\gamma^{2} K}\right)$
(b) Undulators $\left(\psi_{0} \ll \Delta \theta\right.$ or $\left.K \ll 1\right)$
- If $\psi_{0} \ll \Delta \theta$, the searchlight beam of radiation moves negligibly compared to its own angular width.
- the radiation detected by an observer is an almost coherent superposition of the contributions from all the oscillations of the trajectory.
- For perfect coherence \& an infinite number of magnet periods (and infinitesimal angular resolution of the detector), the radiation would be monochromatic.
- For finite N magnet periods the spread in frequency is $\Delta \omega / \omega=O(1 / N)$.
- the frequency spectrum from an undulator is sharply peaked.
- The FitzGerald-Lorentz contraction means that in the particle's rest frame the magnet structure is rushing by the particle with a spatial period λ_{0} / γ
$\omega_{\text {rest }} \approx \gamma \frac{2 \pi c}{\lambda_{0}} \Rightarrow \omega_{\text {rest }}=\gamma \omega_{\text {lab }}(1-\beta \cos \theta) \approx \omega_{\text {lab }} \frac{1+\gamma^{2} \theta^{2}}{2 \gamma} \Rightarrow \omega_{\text {lab }} \approx \frac{2 \gamma^{2}}{1+\gamma^{2} \theta^{2}} \frac{2 \pi c}{\lambda_{0}}$
For $\gamma \theta \ll 1 \Rightarrow \omega_{\text {lab }}=O\left(\gamma^{2}\right)$ with fixed K

B. Some Details of the Kinematics and Particle Dynamics

- to consider the particle in its average rest frame, in which it oscillates both transversely and longitudinally.
- Its initial γ and β remain unchanged because \mathbf{B} does no work on the particle.
${ }^{\bullet}$ Due to the transverse motion, the particle's average speed in the z-direction, $c \bar{\beta}<c \beta$, and its associated $\bar{\gamma}<\gamma$. The average rest frame moves with speed $c \bar{\beta}$.
- length $s=\int_{0}^{\lambda_{0}} \sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} z}\right)^{2}} \mathrm{~d} z=\int_{0}^{\lambda_{0}}\left[1+\frac{1}{2}\left(\frac{\mathrm{~d} x}{\mathrm{~d} z}\right)^{2}+\cdots\right] \mathrm{d} z \approx \lambda_{0}\left(1+\frac{1}{4} \psi_{0}^{2}\right)$ for $\psi_{0} \ll 111$

$$
\begin{aligned}
& \Rightarrow \quad \bar{\beta}=\frac{\beta}{1+\psi_{0}^{2} / 4} \approx \beta\left(1-\frac{1}{4} \psi_{0}^{2}\right) \approx 1 \text { for } \beta \approx 1 \\
& \Rightarrow \quad \bar{\gamma}^{-2}=1-\bar{\beta}^{2} \approx 1-\beta^{2}\left(1-\frac{1}{2} \psi_{0}^{2}\right) \approx \gamma^{-2}+\frac{1}{2} \psi_{0}^{2}=\gamma^{-2}\left(1+\frac{1}{2} K^{2}\right) \Rightarrow \bar{\gamma}=\frac{\gamma}{\sqrt{1+K^{2} / 2}}
\end{aligned}
$$

Since $K \gg 1, \quad \bar{\gamma}$ can differ significantly from γ.
$\begin{array}{r}\text { Lorentz } \\ \text { force eqn } \\ \mathrm{d} p_{x} \\ \mathrm{~d} \tau\end{array} \operatorname{e} \gamma\left[E_{x}+(\boldsymbol{\beta} \times \mathbf{B})_{x}\right] \Rightarrow \quad \ddot{x}=-\frac{e B_{y} \beta_{z}}{\gamma m} \Leftarrow \begin{aligned} & \beta, \gamma=\text { const } \\ & \beta_{y} B_{z} \rightarrow 0\end{aligned}$

$$
\begin{aligned}
& z \simeq c t \\
& \beta_{z} \simeq 1
\end{aligned} \quad \Rightarrow \quad B_{y}(z)=-\frac{\gamma m c^{2}}{e} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} z^{2}}=B_{0} \sin k_{0} z \quad \Leftarrow \quad B_{0}=\frac{\gamma m c^{2} k_{0}^{2} a}{e}
$$

the requisite magnetic structure to have a sinusoidal transverse motion

- $K=\gamma k_{0} a=\frac{e B_{0}}{k_{0} m c^{2}}=\frac{e B_{0} \lambda_{0}}{2 \pi m c^{2}}$
- An actual magnet structure will be periodic, but not sinusoidal.
- We can make a Fourier decomposition of the actual B_{y} in multiples of k_{0}. Each component will contribute to the motion. The fundamental will dominate. For simplicity, we keep only that contribution.
- The longitudinal oscillations can be found from the constancy of β

$$
\begin{align*}
\beta_{z}(t) & \approx \beta-\frac{\beta_{x}^{2}}{2 \beta} \approx \beta-\frac{\beta_{x}^{2}}{2} \Leftarrow \beta_{z}^{2}=\beta^{2}-\beta_{x}^{2}, \quad\left|\beta_{x}\right| \ll \beta \\
& \approx \beta-\frac{1}{2} k_{0}^{2} a^{2} \cos ^{2}\left(k_{0} c t\right) \Leftarrow \beta_{x} \approx k_{0} a \cos \left(k_{0} c t\right) \Leftarrow x=a \sin k_{0} z \approx a \sin \left(k_{0} c t\right) \\
& =\beta-\frac{1}{4} k_{0}^{2} a^{2}\left[1+\cos \left(2 \mathrm{k}_{0} c t\right)\right]=\bar{\beta}-\frac{K^{2}}{4 \gamma^{2}} \cos \left(2 \mathrm{~K}_{0} c t\right) \\
z(t) & =\int c \beta_{z}(t) \mathrm{d} t=c \bar{\beta} t-\frac{\lambda_{0} K^{2}}{16 \pi \gamma^{2}} \sin \left(2 k_{0} c t\right) \quad \text { longitudinal } \tag{7}\\
x(t) & =\int c \beta_{x}(t) \mathrm{d} t=\frac{\lambda_{0} K}{2 \pi \gamma} \sin \left(k_{0} c t\right) \quad \text { transverse }
\end{align*}
$$

C Particle Motion in the Average Rest Frame

- Lorentz

$$
\begin{aligned}
x^{\prime} & =x \\
z^{\prime} & \left.=\bar{\gamma}(z-c \bar{\beta} t) \Rightarrow c t^{\prime}=\bar{\gamma}\left[c t\left(1-\bar{\beta}^{2}\right)+\frac{\bar{\beta} K^{2}}{8 k_{0} \gamma^{2}} \sin 2 \theta\right] \Leftarrow \begin{array}{l}
(7) \\
\theta=k_{0} c t
\end{array}\right)=\bar{\gamma}(c t-\bar{\beta} z)
\end{aligned}
$$

$\Rightarrow t=\bar{\gamma} t^{\prime}-\frac{1}{4 \mathrm{k}_{0} c} \frac{K^{2}}{2+K^{2}} \sin \left(2 \bar{\gamma} k_{0} c t^{\prime}\right) \Leftarrow t \approx \bar{\gamma} t^{\prime}$ to the 1st approximation
$\Rightarrow \quad \theta=\bar{\gamma} k_{0} c t^{\prime}-\frac{1}{4} \frac{K^{2}}{2+K^{2}} \sin \left(2 \bar{\gamma} k_{0} c t^{\prime}\right) \Leftarrow \begin{aligned} & \text { usually using the } 1 \text { st term is good enough } \\ & \text { the } 2 \text { nd term is used in differentiation }\end{aligned}$

$$
\begin{aligned}
& x^{\prime}\left(t^{\prime}\right)=\frac{K}{\gamma k_{0}} \sin \theta\left(t^{\prime}\right)=a \sin \theta\left(t^{\prime}\right) \\
& \Rightarrow \quad z^{\prime}\left(t^{\prime}\right)=-\frac{\bar{\gamma} K^{2}}{8 \gamma^{2} k_{0}} \sin 2 \theta\left(t^{\prime}\right) \\
& =-\frac{K a}{8 \sqrt{1+k^{2} / 2}} \sin 2 \theta\left(t^{\prime}\right) \\
& \Rightarrow \quad z^{\prime}=\mp 2 z^{\prime}{ }_{\max } \frac{x^{\prime}}{a} \sqrt{1-\frac{x^{\prime 2}}{a^{2}}} \Leftarrow z^{\prime}{ }_{\max }=\frac{K a}{8 \sqrt{1+K^{2} / 2}} \Rightarrow \begin{array}{l}
K \gg 1 \Rightarrow \infty \text {-pattern } \\
K \ll 1 \Rightarrow 1 \mathrm{SHM} \text { in } x
\end{array} \\
& \text { - }\left[\begin{array}{l}
\text { particle's speed in } \\
\text { the moving frame }
\end{array}\right]^{2}=\beta^{\prime 2}=\frac{1}{c^{2}}\left[\left(\frac{\mathrm{~d} x}{\mathrm{~d} t^{\prime}}\right)^{2}+\left(\frac{\mathrm{d} z^{\prime}}{\mathrm{d} t^{\prime}}\right)^{2}\right] \\
& \Rightarrow \quad \beta^{\prime 2}=\left[\frac{2 K^{2}}{2+K^{2}} \cos ^{2} \theta+\frac{K^{4}}{4\left(2+K^{2}\right)^{2}} \cos ^{2} 2 \theta\right]\left[1-\frac{K^{2}}{2\left(2+K^{2}\right)} \cos 2 \theta\right]^{2} \Leftarrow \underset{\substack{\theta \\
\text { now }}}{\theta=\bar{c} k_{0} c t^{\prime}} \\
& \beta^{\prime} \approx K \cos \theta \quad \text { for } K \ll 1 \Rightarrow \text { nonrelativistic SHM } \quad \Rightarrow \quad \text { undulator } \\
& \Rightarrow \quad \beta^{\prime} \approx 1-\frac{\left(2 \cos ^{2} \theta-1\right)^{2}}{4} \text { for } K \rightarrow \infty \Rightarrow \frac{3}{4}<\beta^{\prime}<1 \text { relativistic } \Rightarrow \text { wiggler }
\end{aligned}
$$

- the radiation in the moving frame consists of many harmonics of the basic frequency, with an angular distribution that is far from a simple dipole pattern.
- The laboratory radiation pattern from a strong wiggler is better described by the contributions in the direction of observation.

D. Radiation Spectrum from an Undulator

- When $K \ll 1$, the motion in the average rest frame is in nonrelativistic SHM along the x axis and it emits monochromatic dipole radiation

$$
\begin{aligned}
& \frac{\mathrm{d} P^{\prime}}{\mathrm{d} \Omega^{\prime}}=\frac{e^{2} c}{8 \pi} k^{\prime^{4}} a^{2} \sin ^{2} \Theta \Leftarrow k^{\prime}=\bar{\gamma} k_{0} \quad \begin{array}{c}
\text { wave number in } \\
\text { the moving frame }
\end{array} \\
&= \frac{e^{2} c}{8 \pi} K^{2}\left(k_{y}^{\prime 2}+k_{z}^{\prime 2}\right) \Leftarrow \quad k^{\prime 2} \sin ^{2} \Theta=k_{y}^{\prime 2}+k_{z}^{\prime 2} \\
& K=\gamma k_{0} a \approx \bar{\gamma} k_{0} a \ll 1
\end{aligned}
$$

- Since the phase-space density $\mathrm{d}^{3} k / \omega$ is a Lorentz invariant, it is useful to consider $\omega^{\prime} \mathrm{d}^{3} P^{\prime} / \mathrm{d}^{3} k^{\prime}$,

$$
\mathrm{d}^{3} P^{\prime} \equiv \mathrm{d} P^{\prime} \mathrm{d} k^{\prime}=\frac{\mathrm{d} P^{\prime}}{\mathrm{d} \Omega^{\prime}} \frac{c}{k^{\prime}} \frac{\mathrm{d}^{3} k^{\prime}}{\omega^{\prime}}
$$

$$
=\left[\frac{e^{2} c^{2}}{8 \pi} K^{2}\left(k_{y}^{\prime 2}+k_{z}^{\prime 2}\right) \frac{\delta\left(k^{\prime}-\bar{\gamma} k_{0}\right)}{\bar{\gamma} k_{0}}\right] \frac{\mathrm{d}^{3} k^{\prime}}{\omega^{\prime}} \Leftarrow \begin{aligned}
& \mathrm{d}^{3} k^{\prime}=k^{\prime 2} \mathrm{~d} k^{\prime} \mathrm{d} \Omega^{\prime} \\
& \text { Inserting } \delta\left(k^{\prime}-\bar{\gamma} k_{0}\right) \text { to assure } \\
& \text { the monochromatic nature }
\end{aligned}
$$

$\Delta t^{\prime}=\frac{\lambda_{0}}{\bar{\gamma} \bar{\beta} c} \approx \frac{\lambda_{0}}{\bar{\gamma} c}$ time for passing one period of the magnet structure in the moving frame
$\Rightarrow \quad \begin{gathered}\text { No. of photon } \\ \text { emitted }\end{gathered}=\frac{\Delta t^{\prime}}{\hbar \omega^{\prime}} \frac{\mathrm{d}^{3} P^{\prime}}{\mathrm{d}^{3} k^{\prime} / \omega^{\prime}} \Leftarrow N^{\prime}=N \Rightarrow \frac{\Delta t}{\hbar \omega} \frac{\mathrm{~d}^{3} P}{\mathrm{~d}^{3} k / \omega} \Leftarrow \quad$ invariant

$$
\Rightarrow \frac{\mathrm{d}^{3} P}{\mathrm{~d}^{3} k / \omega}=\frac{\omega \Delta t^{\prime}}{\omega^{\prime} \Delta t} \frac{\mathrm{~d}^{3} P^{\prime}}{\mathrm{d}^{3} k^{\prime} / \omega^{\prime}}=\frac{c e^{2} K^{2}}{8 \pi \bar{\gamma}^{3}} \frac{k^{2}}{k_{0}^{2}}\left(k_{y}^{\prime 2}+k_{z}^{\prime 2}\right) \delta\left(k^{\prime}-\bar{\gamma} k_{0}\right) \Leftarrow \begin{gathered}
\Delta t / \Delta t^{\prime}=\bar{\gamma} \\
\frac{\mathrm{d}^{3} k}{\omega}=\frac{k \mathrm{~d} k \mathrm{~d} \Omega}{c}
\end{gathered}
$$

$$
\begin{aligned}
& \phi^{\prime}=\phi \\
& k_{y}^{\prime}=k_{y}=k \sin \theta \sin \phi \quad \text { in the lab variables } \quad+\quad k=\frac{k_{0}}{1-\bar{\beta} \cos \theta} \quad \Leftarrow \quad k^{\prime}=\bar{\gamma} k_{0}
\end{aligned}
$$

$$
\begin{array}{ll}
k_{z}^{\prime}=\bar{\gamma} k(\cos \theta-\bar{\beta}) \\
k^{\prime}=\bar{\gamma} k(1-\bar{\beta} \cos \theta)
\end{array} \quad \bar{\gamma} \gg 1 \Rightarrow \theta \ll 1, \quad \bar{\beta} \approx 1-\frac{1}{2 \overline{\gamma^{2}}}
$$

$$
\Rightarrow \quad \frac{\mathrm{d}^{3} P}{\mathrm{~d} \eta \mathrm{~d} k \mathrm{~d} \phi}=\frac{c e^{2} \bar{\gamma}^{2} K^{2} k_{0}^{2}}{2 \pi} \frac{(1-\eta)^{2}+4 \eta \sin ^{2} \phi}{(1+\eta)^{4}} \delta\left[k(1+\eta)-2 \bar{\gamma}^{2} k_{0}\right] \Leftarrow \eta=(\bar{\gamma} \theta)^{2}
$$

- because of the delta function, the freq and angular distributions are not indep.

(a) Angular Distribution

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} P}{\mathrm{~d} \eta \mathrm{~d} \phi}=\int \frac{\mathrm{d}^{3} P}{\mathrm{~d} \eta \mathrm{~d} k \mathrm{~d} \phi} \mathrm{~d} k=\frac{c e^{2} \bar{\gamma}^{2} K^{2} k_{0}^{2}}{2 \pi} \frac{(1-\eta)^{2}+4 \eta \sin ^{2} \phi}{(1+\eta)^{5}} \\
& \Rightarrow \text { total radiated power } P=\frac{c e^{2} \bar{\gamma}^{2} K^{2} k_{0}^{2}}{3} \Leftarrow \frac{\mathrm{~d} P}{\mathrm{~d} \eta}=\int \frac{\mathrm{d}^{2} P}{\mathrm{~d} \eta \mathrm{~d} \phi} \mathrm{~d} \phi=3 P \frac{1+\eta^{2}}{(1-\eta)^{5}}
\end{aligned}
$$

- $\langle\eta\rangle=1$

(b) Frequency Distribution

$\frac{\mathrm{d} P}{\mathrm{~d} v}=\int_{n_{1}}^{n_{2}} \frac{\mathrm{~d}^{3} P}{\mathrm{~d} \eta \mathrm{~d} v \mathrm{~d} \phi} \mathrm{~d} \eta \mathrm{~d} \phi=3 P v\left(1-2 v+2 v^{2}\right) \Leftarrow \frac{1}{1+\eta_{2}}<v\left[\equiv \frac{k}{2 \bar{\gamma}^{2} k_{0}}\right]<\frac{1}{1+\eta_{1}}$

- this spectrum is for perfectly sinusoidal motion of the particle at all times.
- If N of magnet periods is finite, the duration of the oscillatory motion is finite; the wave train will have a fractional spread in frequency of the order of $1 / \mathrm{N}$.

- For large N the spread is small compared to the spread from finite acceptance.
- For small K, there are higher harmonics, coming from higher multipoles caused by the ∞-pattern motion.
- The $2^{\text {nd }}$ harmonic comes from a coherent superposition of the fields of a dipole in the z -direction $\left[\mathrm{z}^{\prime} \propto \sin 2 \theta\left(\mathrm{t}^{\prime}\right)\right]$ and a quadrupole caused by the x^{\prime} motion.

(c) Energy of Photons and Number Emitted per Magnet Period

- $\hbar \omega_{\max }=2 \hbar \bar{\gamma}^{2} k_{0} c$ at $\eta=0+\begin{gathered}\text { energy radiated } \\ \text { per magnet period }\end{gathered} \Delta E=P \Delta t \Leftarrow \Delta t=\frac{\lambda_{0}}{c}$
$\Rightarrow \quad \begin{gathered}\text { No. of photon } \\ \text { per magnet period }\end{gathered} N_{\gamma} \geq \frac{P \Delta t}{\hbar \omega_{\max }}=O\left(\alpha K^{2}\right) \quad \Rightarrow \quad N_{\gamma}=\frac{2 \pi}{3} \alpha K^{2} \Leftarrow$

E. Numerical Values and Representative Spectra and Facilities

- The parameters K and $\hbar \omega_{\max }$ are given for electrons
$K=\frac{e B_{0}}{k_{0} m c^{2}}=\frac{e B_{0} \lambda_{0}}{2 \pi m c^{2}} 93.4 B_{0}(T) \lambda_{0}(\mathrm{~m}), \quad \hbar \omega_{\text {max }}(\mathrm{eV})=\frac{9.496[E(\mathrm{GeV})]^{2}}{\left(1+K^{2} / 2\right) \lambda_{0}(\mathrm{~m})}$
\Rightarrow Typical undulator: $B_{0} \sim 0.5 T, \lambda_{0} \sim 4 \mathrm{~cm}, E \sim 1-7 \mathrm{GeV} \Rightarrow \begin{aligned} & K \sim 2 \\ & \\ & \hbar \omega_{\max } \sim 80 \mathrm{eV}-4 \mathrm{keV}\end{aligned}$
Typical wiggler: $B_{0} \sim 1 T, \lambda_{0} \sim 20 \mathrm{~cm} \Rightarrow K \sim 20$
- The lower energy facilities provide photons in the tens of eV^{10} to several KeV range; the highenergy facilities extend to 10-75 keV , and higher at reduced flux.

F. Additional Comments

- An undulator's fundamental freq. $\omega_{\text {max }}$ can be tuned by varying ${ }^{10^{11}}$ K by changing the gap in the magnet structure \& changing B_{0}.

14.8 Thomson Scattering of Radiation

- If a plane wave of monochromatic EM radiation is incident On a free charged particle, the particle will be accelerated and so emit radiation-scattering of the incident radiation.
$\bullet \mathbf{E}(\mathbf{x}, t)=\boldsymbol{\epsilon}_{0} E_{0} e^{i\left(\mathbf{k}_{0} \cdot \mathbf{x}-\omega t\right)}$
$\Rightarrow \quad \dot{\mathbf{v}}(t)=\boldsymbol{\epsilon}_{0} \frac{e}{m} E_{0} e^{i\left(\mathbf{k}_{0} \cdot \mathbf{x}-\omega t\right)} \Leftarrow \epsilon_{0}$: polarization of EM wave
$\frac{\mathrm{d} P}{\mathrm{~d} \Omega}=\frac{e^{2}}{4 \pi c^{3}}\left|\boldsymbol{\epsilon}^{*} \cdot \dot{\mathbf{v}}\right|^{2} \Leftarrow \boldsymbol{\epsilon}$: polarization of radiation

$\left.\left.\Rightarrow \quad \frac{\mathrm{d} P}{\mathrm{~d} \Omega}\right\rangle=\left.\frac{c}{8 \pi} \frac{e^{4}}{m^{2} c^{4}}\left|E_{0}\right|^{2}\left|\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}\right|^{2} \Leftarrow\langle | \dot{\mathbf{v}}\right|^{2}\right\rangle=\frac{1}{2} \mathfrak{R}\left(\dot{\mathbf{v}} \cdot \dot{\mathbf{v}}^{*}\right)$
$\Rightarrow \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\frac{\text { Energy radiated/time/solid angle }}{\text { Incident energy flux in energy/area/time }}=\frac{\mathrm{d} P / \mathrm{d} \Omega}{c\left|E_{0}\right|^{2} / 8 \pi}=\frac{e^{4}}{m^{2} c^{4}}\left|\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}\right|^{2}$
$\boldsymbol{\epsilon}_{1}=\cos \theta\left(\mathbf{e}_{x} \cos \phi+\mathbf{e}_{y} \sin \phi\right)-\mathbf{e}_{z} \sin \theta, \quad \epsilon_{2}=-\mathbf{e}_{x} \sin \phi+\mathbf{e}_{y} \cos \phi$
$\Rightarrow \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\frac{e^{4}}{m^{2} c^{4}} \cdot\left[\begin{array}{ll}\left(\cos ^{2} \theta \cos ^{2} \phi+\sin ^{2} \phi\right) & \text { linear polarization } \| x \text {-axis } \\ \left(\cos ^{2} \theta \sin ^{2} \phi+\cos ^{2} \phi\right) & \text { linear polarization } \| y \text {-axis }\end{array}\right.$
$\Rightarrow \quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\frac{e^{4}}{m^{2} c^{4}} \frac{1+\cos ^{2} \theta}{2}$ unpolarized \Leftrightarrow Thomson formula
$\Rightarrow \quad \sigma_{T}=\frac{8 \pi}{3} \frac{e^{4}}{m^{2} c^{4}} \Leftarrow$ Thomson cross section
- Thomson formula is for scattering of radiation by a free charge, and is appropriate for the scattering of x-rays by electrons or γ-rays by protons.
- The Thomson cross section is equal to $0.665 \times 10^{-24} \mathrm{~cm}^{2}$ for electrons.
- $e^{2} / m c^{2}=2.82 \times 10^{-13} \mathrm{~cm}$ is called the classical electron radius since a classical distribution of charge totaling the electronic charge must have o a radius of this order if its electrostatic self-energy is to equal the electron mass.
- The classical Thomson formula is valid only at low frequencies where the momentum of the incident photon can be ignored.
- When the photon's momentum $\hbar \omega / c$ becomes comparable to or larger than $m c$, modifications occur-quantum-mechanical effects.
-The energy or momentum of the scattered photon is less than the incident energy because the charged particle recoils during the collision.
$-\frac{k^{\prime}}{k}=\frac{m c^{2}}{m c^{2}+\hbar \omega(1-\cos \theta)} \quad$ Compton formula $\Leftarrow \quad \theta$: scattering angle in the lab
$\Rightarrow \quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\frac{e^{4}}{m^{2} c^{4}} \frac{k^{\prime 2}}{k^{2}}\left|\boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\epsilon}_{0}\right|^{2} \Leftarrow \quad$ spinless particle
- $\left(k^{\prime} / k\right)^{2}$ comes entirely from the phase space. Its presence causes the differential cross section to decrease relative to the Thomson result at large angles.

$$
\Rightarrow \quad \frac{\sigma}{\sigma_{T}}=\left[\begin{array}{ll}
1-2 \frac{\hbar \omega}{m c^{2}}+\cdots & \text { for } \hbar \omega \ll m c^{2} \\
\frac{3}{4} \frac{m c^{2}}{\hbar \omega} & \text { spinless } \\
\frac{3}{4} \frac{m c^{2}}{\hbar \omega}\left(\frac{1}{4}+\frac{1}{2} \ln \frac{2 \hbar \omega}{m c^{2}}\right) & \text { electron } \\
&
\end{array}\right.
$$

- For protons the departures from the Thomson formula occur at $\hbar \omega>100 \mathrm{MeV}$. This is far below the critical energy $\hbar \omega \sim M c^{2} \sim 1 \mathrm{GeV}$.
- The reason is that a proton is not a point particle but having a spread-out charge distribution by the strong interactions.

