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 It is useful to consider the formulation of the dynamics from the viewpoint of 
Lagrangian and Hamiltonian mechanics.

 The principle of least actionThe principle of least action: the motion of a mechanical system is such that in 

going from one configuration at one time to another configuration at another 
time, the action is an extremum.

 wish to extend the formalism to relativistic motion in a manner consistent with 
SR and leading for charged particles in external fields to the right eqns.

A. Elementary Approach to a Relativistic LagrangianA. Elementary Approach to a Relativistic Lagrangian 

 From the 1st postulate of SR the action integral must be a Lorentz scalar 
because the eqns of motion are determined by the extremum condition.

12.1 Lagrangian & Hamiltonian for a Relativistic Charged Particle    
                                                   in External EM Fields 

A=�
t

1

t
2

L [q
i
�t � , �q

i
� t � , t ] d t � � A=0 �

d

d t

� L

� �q
i

�
� L

� q
i

=0 	 Euler-Lagrange

eqn of motion

d p

d t
=e [E


u

c
×B]

d E

d t
=e u�E

�
d U

�

d 
=

e

m c
F
� �

U� �&� 	 �U= �� c , � u�=
�p

m



  

 The Lagrangian for a free particle can be a function of its velocity & mass, but 

not of its position. The only Lorentz invariant of the velocity available is U�U
�=c2

 If a particle stays at rest initially and after in the frame, the integral over proper 
time will be larger than if it moves with a nonzero velocity along its path. So a 
straight world line gives the maximum integral over proper time.

 This motion at constant velocity is the solution of the free-particle eqn of motion. 

 for a relativistic charged particle in external EM fields  
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 the total energy W/c acts as the time component of a canonically conjugate 4-

momentum P� of which P is the space part.

 the eqns of motion are invariant under a gauge transformation of the potentials.

 Since the Lagrangian involves the potentials, it is not invariant. But the change 
in the Lagrangian is of such a form (a total time derivative) that it does not alter 
the action integral or the eqns of motion. [Problem 12.2]

B. Manifestly Covariant Treatment of the Relativistic LagrangianB. Manifestly Covariant Treatment of the Relativistic Lagrangian 

 the eqn of constraint:

can be incorporated by the Lagrange multiplier method, but we try another way.
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 For a charged particle in an external field  
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A circular motion � to � & a uniform translation � to B 

 This form is convenient for the determination of particle momenta.

 For particles with charge the same in magnitude as the electronic charge

12.2 Motion in a Uniform, Static Magnetic Field 
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 In K' the only field acting is a static B' pointing in the same direction as B, but 

weaker by a factor �-1.

 

12.3 Motion in Combined, Uniform, Static E & B Fields
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 The drift velocity has physical meaning only if it is less than c, ie, if |E|<|B|.

 If |E|>|B|, E is so strong that the particle is continually accelerated in the 
direction of E and its average energy continues to increase with time

In K� the particle is acted on by a purely E� which causes hyperbolic motion with 
ever-increasing velocity.

 If a beam of particles having a spread in velocities is normally incident on a 
region containing uniform crossed E & B, only those particles with velocities 

equal to cE/B will travel without deflection.

 Suitable entrance and exit slits will allow only a very narrow band of velocities 

around cE/B to be transmitted.

 Combined with momentum selectors, like a deflecting magnet, the E � velocity 
selectors can extract a very pure & monoenergetic beam of particles of a definite 
mass from a mixed beam with different masses and momenta � commonly used 
in high-energy accelerators.
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 If E has a component parallel to B, the behavior of the particle cannot be 
understood in such simple term

 If E���0, E & B will exist simultaneously in all Lorentz frames. Consequently
motion in combined fields must be considered.

E�B and E
2� B

2
are the only 2 Lorentzinvariants

E� B � E�B=0 � " a Lorentz frame where
E=0 if B!E

B=0 if E!B



  

 Often the variations are gentle enough that a perturbation solution to the motion 
is an adequate approximation.

 consider a gradient � to the direction of B

 Since the direction of � is unchanged, the motion � to � remains a uniform 
translation. We then consider only modifications in the transverse motion.  

12.4 Particle Drifts in Nonuniform, Static B Fields
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 the rectangular components of x0� oscillate sinusoidally with peak amplitude a 

and a phase difference of 90°, so only the component of x0� � to n contributes

 The particle tends to spiral around a field line, but the field line curves off to the 

side. This is equivalent to a centrifugal acceleration of magnitude v�

2/R.
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 The acceleration can be viewed as arising from an effective electric field 

 The sign in the eqn is for positive charges and is independent of the sign of v�. 

For negative particles the opposite sign arises from �B.

 A straightforward derivation comes from solving the Lorentz force eqn directly.

with origin at the center of curvature, B � has only  &-component, B&= B0(R/'). 
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 For a toroidal tube with a strong field, the plasmas inside will drift out to the 
walls in a short time. Hotter the plasmas, greater the drift rate.

 One way to prevent this 1st-order drift in toroidal geometries is to twist the torus 
into a 8.

 The particles make many circuits around the closed path,  so they feel no net 

curvature or gradient of the field, and no net drift, at least to 1st order in 1/R. 
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 we now consider motion parallel to the lines of force.

 for slowly varying fields a powerful tool is the concept of adiabatic invariants.

 If qi and pi are the generalized canonical coordinates & momenta, and for each 

coordinate which is periodic, the action integral is defined by 

 For a given mechanical system the action integrals are constants.

 if a change is slow compared to the periods of motion and is not related to the if a change is slow compared to the periods of motion and is not related to the 

periods (ie, periods (ie, adiabatic changeadiabatic change), the action integrals are invariant.), the action integrals are invariant.

 One system can be changed into another system with an adiabatic change, but 
the values of the action integrals have the same values in both systems.

 For a charged particle in a uniform, static B, the transverse motion is periodic.

12.5 Adiabatic Invariance of Flux Through Orbit of Particle 
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 To 1st order in small quantities the constancy of flux linking the orbit follows 
directly from the eqns of motion. 

 The adiabatic invariance of the flux linking an orbit is useful in particle motions 
in all types of spatially varying magnetic fields.
 



 When the finite velocity of propagation of EM fields is taken into account, this is 
possible that the Lagrangian is a function of the instantaneous velocities and 
coordinates of all the particles, since the values of the potentials at one particle 
due to the other particles depend on their state of motion at �retarded� times.

 consider a conventional Lagrangian of the interaction of two or more charged 
particles with each other, and it is possible only at nonrelativistic velocities.

 to generalize beyond the static limit, we must determine both �12 and A12.

 In general there are relativistic corrections to �12 & A12. But in the Coulomb 

gauge, the scalar potential is given correctly to all orders in v/c by the Coulomb 
potential. Thus, all that needs to be considered is the vector potential A12.

12.6 Lowest Order Relativistic Corrections to the Lagrangian for 
Interacting Charge Particles: The Darwin Lagrangian
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 The Lagrangian approach to continuous fields closely parallels the techniques 
used for discrete point particles. The finite number of coordinates are replaced by 
an infinite number of degrees of freedom. Each point in space-time corresponds 
to a finite number of values of the discrete index. The generalized coordinate is 
replaced by a continuous field. The generalized velocity is replaced by the 4-
vector gradient

 
 The Lorentz-invariant nature of the action is preserved provided the Lagrangian 

density is a Lorentz scalar since the 4d volume element is invariant.

 expect the free-field Lagrangian to be quadratic in the velocities, a scalar under 
proper Lorentz transformations, and the interaction involves the source densities

12.7 Lagrangian for the EM Field
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 The conventional Maxwell eqns and the Lagrangian are based on the hypothesis 
that the photon has zero mass.

 the Proca LagrangianProca Lagrangian: add a �mass� term into the Lagrangian

 In the Proca eqns the potentials as well as the fields enter, thus the potentials 
acquire real physical  significance through the mass term.

 the exponential factor alters the character of the earth's B sufficiently to permit 
us to set quite stringent limits on the photon mass.

12.8 Proca Lagrangian; Photon Mass Effects 
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 consider some resonant system (cavity/lumped circuit)

 measure the difference between � and �0 in a circuit for a given photon mass.

 However, lumped circuits are incapable of setting any limit on the photon mass.

 for a solid conducting sphere of radius a at the center of a hollow conducting 

shell of inner radius b held at zero potential, the capacitance is increased by

very insensitive in practice to a possible photon mass.

 for . ���=0 the  modes of a transmission line are degenerate modes, with 

propagation at a phase velocity=c. The situation does not alter if .�0. The only 

difference is that the transverse behavior of the fields is governed by (;t
2-.2)<=0 

instead of the Laplace eqn.
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 Meissner effectMeissner effect: the expulsion of B from the interior of a superconductor as it 

transits from the normal state (T>Tc) to the superconducting state (T<Tc).

 If B is applied after the material is superconducting, it penetrates a very small 
distance called the London penetration depthLondon penetration depth (~10 nm).

 Being a perfect conductor, a superconductor is perfectly diamagnetic.

 

 no current flows across the interface between normal and superconducting 
media, so the normal component of A vanishes.

 

12.9 Effective "Photon" Mass in Superconductivity; London  
       Penetration Depth
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 the charge carriers in low-temperature superconductors are pairs of electrons 
loosely bound by a 2nd-order interaction through lattice phonons

 

 in high-temperature superconductors penetration depths are found to be an 
order of magnitude smaller than in conventional superconductors.

 Measurements of 3L(T) can be done by incorporating the superconductor into a 
resonant circuit and studying the shift in resonant frequency with change in 
temperature.

the impedance is inductive, corresponding to an inductance per unit area,L=.03L.
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A. Generalization of the Hamiltonian: Canonical Stress TensorA. Generalization of the Hamiltonian: Canonical Stress Tensor

 Hamiltonian density:

 Since the energy of a particle is the time component of a 4-vector, H should 

transform in the same way. Since the invariant 4-volume element is d4x=d3xdx0,  H 

transform as the time-time component of a 2nd-rank tensor.

 The inferred Lorentz transformation properties of H suggest that the covariant 

generalization of the Hamiltonian density is the canonical stress tensor:

 For the free EM field Lagrangian

12.10 Canonical and Symmetric Stress Tensors; Conservation Laws
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 suppose that the fields are localized in some finite region of space

 The differential conservation statement:

Proof:

 The conservation law or continuity eqn yields the conservation of total energy 
and momentum upon integration over all of 3-space at fixed time
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B. Symmetric Stress TensorB. Symmetric Stress Tensor 

 Deficiencies (1) T00 & T0i
 differ from the usual expressions for E and P densities.

                      (2) lack of symmetry
                      (3) it involves the potentials explicitly, and so is not gauge invariant
                      (4) its trace is not zero, as required for zero-mass photons. 
 
 the angular momentum of the field

 its covariant generalization�3rd-rank tensor 
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�. Conservation Laws for EM Fields Interacting with Charged Particles �. Conservation Laws for EM Fields Interacting with Charged Particles 
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 The solution can be accomplished by finding a Green function for the eqn 

 In the absence of boundary surfaces, the Green function can depend only on the 
4-vector difference 

 The k0 integrand has two simple poles at k0=±?.

 Green functions that differ in their behavior are obtained by choosing different 
contours of integration relative to the poles.

12.11 Solution of the Wave Eqn in Covariant Form; Invariant Green
         Functions 
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 These Green functions can be put in covariant form

 The , functions, apparently noninvariant, are actually invariant under proper 
Lorentz transformations when constrained by the delta functions. 

 the retarded (advanced) Green function is different from zero only on the 
forward (backward) light cone of the source point.

 The solution of the wave eqn    
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 In the limit x0A-B, the integral in (*1) vanishes, assuming the sources are 
localized in space and time,  the retarded nature of the Green function.

 The radiation fields: difference between the outgoing and the incoming fields.

 For a charged particle

can be written as a 4-vector current in manifestly covariant form 
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