
  

Chapter 8Chapter 8Chapter 8Chapter 8Chapter 8Chapter 8Chapter 8Chapter 8Chapter 8Chapter 8 Waveguides, Resonant Cavities, Optical Fibers
 At high frequencies with wavelengths~meters or less, generating & transmitting 

EM radiation involves metallic structures with dimensions~the wavelengths.

 At much higher (infrared) frequencies, dielectric optical fibers are exploited in 
the telecommunications industry.

 Consider a surface with unit normal n outward from a perfect conductor into a 
nonconducting medium

8.1 Fields at the Surface of and Within a Conductor  
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 outside the surface of a perfect conductor only normal E and tangential H fields 
can exist, and that the fields drop abruptly to zero inside the perfect conductor.

 inside a good (not perfect) conductor the fields are attenuated exponentially in 
the skin depth �. For moderate frequencies, � <1cm. So the boundary condition 
(1) are approximately true, aside from a thin transitional layer at the surface.

 By J=	E, with a finite conductivity there can't be a surface layer of current but

 First assume that just outside the conductor there exists only E
 & ��, as for a 
perfect conductor.

 Then use the boundary conditions & Maxwell's eqns in the conductor to find the 
fields within the transition layer and small corrections to the fields outside. 

 the spatial variation of the fields  
 to the surface is much more rapid than the 
variations � to the surface in solving the Maxwell eqns within the conductor
� neglect all derivatives with respect to coordinates � to the surface.
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 H & E inside the conductor exhibit the 
properties of rapid exponential decayrapid exponential decay, 
phase differencephase difference, and magnetic field much magnetic field much 
larger than the electric fieldlarger than the electric field.

 For a good conductor, the fields inside 
are � to the surface and propagate
to it, 
with magnitude that depend only on the 
tangential magnetic field �� just outside.
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 a good conductor behaves effectively like a perfect conductor, with the idealized 
surface current replaced by an effective surface current, which is distributed 
throughout a very small, but finite, thickness at the surface.  
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 A practical situation of great 
importance is the propagation 
or excitation of EM waves in 
hollow metallic cylinders.

 If the cylinder has end 
surfaces,it is called a cavity; otherwise, a waveguide.

 The boundary surfaces are assumed to be perfect conductors.

8.2 Cylindrical Cavities and Waveguides 
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 If Ez and Bz are known the transverse components of E and � are determined

 the the transverse electromagnetictransverse electromagnetic ��� ( ) wave��� ( ) wave: only field components transverse to 
the direction of propagation � a degenerate solution;

 ETEM is a solution of an electrostatic problem in 2d:

 ���It is necessary to have 2 or more cylindrical surfaces to support the  mode, 
e.g., The coaxial cable and the parallel-wire transmission line. 

 ���the  mode is the absence of a cutoff frequency. The wave number is real for 
all �. This is not true for the other modes.   
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 For a perfectly conducting cylinder (Ec=Bc=0) the boundary conditions are

 The 2d wave equations for Ez and Bz, together with the boundary conditions, 

specify eigenvalue problems of the usual sort.

 For a given frequency �, only certain values of wave number k can occur 

(waveguide). For a given k, only certain � values are allowed (resonant cavity).

 Since the boundary conditions on Ez and Bz are different, the eigenvalues will in 

general be different.

 �� ���The various TM and  waves, plus the  wave if it can exist, constitute a 
complete set to describe an arbitrary EM disturbance in a waveguide or cavity. 
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 For the propagation of waves inside a hollow waveguide of uniform cross 
section, it is found from (2) that

 The elliptic eqn of �, with boundary conditions, specifies an eigenvalue problem.

 �2 must be nonnegative because � must be oscillatory to satisfy the boundary 
condition on opposite sides of the cylinder.

 There will be a spectrum of eigenvalues ��
2 and corresponding solutions �� 

which form an orthogonal set � modes of the guide. 

8.3 Waveguides 
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 For �>��, then k� is real; waves 

of the � mode can propagate in 
the guide.

 For �<��, k� is imaginary; such modes 
cannot propagate and are called cutoff 
modes or evanescent modes.

 at any given frequency only a finite 
number of modes can propagate. 

 It is often convenient to choose the dimensions of the guide so that at the 
operating frequency only the lowest mode can occur.

The phase velocity becomes infinite exactly at cutoff. 
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 For a TE wave

 The presence of a factor i in Hx (Ey) means that there is a spatial (or temporal) 

phase difference of 90° between Hx (Ey) and Hz in the propagation direction.

8.4 Modes in a Rectangular Waveguide 
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 There is a frequency range from cutoff to twice cutoff or to a/b times cutoff 
where the TE1,0 mode is the only propagating mode.
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8.5 Energy Flow and Attenuation in Waveguides 
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 If the walls have a finite conductivity, there is ohmic losses and the power flow 
along the guide will be attenuated.

 ��For the  modes in a rectangular guide,

k� k�
�0��(�� i )� �

(� : unimportant except near cutoff when k�
�0�* 0

)�=�
1

2 P

d P

d z
� P= P

0
e
�2 )� z

�
d P

d z
=

1

2	 �
%

C
�n×H�

2
d �=

1

2	 � [%C

�2

�2��
4 �� �� n �

2

d � �TM�

%
C
[
�

2
���

2

� � ��
4
�n×�

t
��

2
����

2
] d � �TE�

�11�

+�� �� n �
2

,~ +�n×� t
��

2
,~� � ��

2
+���

2
, � ��

t

2
�� � ��

2
� �=0

� %
C �� �� n �

2

d �

��
2
=�� � �

C

A
�

A

���2 d a

� )�=� �� 1

	 ��

C

2 A � � /��

1���
2/�2 [���-� ��

2

�2 ] �5� � ��.� 2

� 	 ��
, For  TM -�=0

�
m , 0

=
a

a�b
, -

m , 0
=

2 b

a�b
� order of unity



  

 For TM modes the minimum always 
occurs at

 At high frequencies the attenuation 
increases as �1/2.

 In the microwave region typical 
attenuation constants for copper guides 

are of the order )�~10-4��/c, giving 1/e 

distances of 200-400 meters.

 (5) break down close to cutoff for
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 The use of energy conservation can determine the attenuation constant )�, but 
gives physically meaningless results at cutoff and fails to yield a value for (�.

�can be obtained by use of the perturbation of boundary conditions.

 consider a single TM mode with no other mode degenerate with it

8.6 Perturbation of Boundary Conditions
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 At cutoff and below where the earlier results failed, (8) yields sensible results 

because k(0))(0) is finite and well behaved in the neighborhood of k(0)=0.

 The transition from a propagating mode to a cutoff mode is not a sharp one if 
the walls are less than perfect conductors, but the attenuation is sufficiently large 
immediately above & below the cutoff frequency that little error is made in 
assuming a sharp cutoff.

 � ��If a TM and   mode are degenerate, then any perturbation can cause sizable 
mixing of the two modes. The methods used so far fail in such circumstances.

 The breakdown of this method occurs in the perturbed boundary condition (7), 

now involving the tangential derivative of Hz and the normal derivative of Ez.

 The perturbed modes are orthogonal linear combinations of the unperturbed TM 
��and  modes
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 an important class of cavities is produced by placing end faces on a length of 
cylindrical waveguide�the end surfaces are plane 
 to the axis of the cylinder.

 Because of reflections at the end surfaces, the z dependence of the fields is that 
appropriate to standing waves:

 

8.7 Resonant Cavities
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 It is usually expedient to choose the various dimensions of 
the cavity so that the resonant freq. lies well separated 
from other resonant freq. and the cavity will be  
stable and insensitive to perturbing effects.

 Consider a right circular cylinder, for a TM mode 

 The resonant freq. for this mode is indep. of d. So simple tuning is impossible.
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 For d>2.03R, the resonance frequency �111 is smaller than that for the lowest 
��TM mode. Then the 1,1,1 mode is the fundamental oscillation of the cavity.

 Because the frequency depends on the ratio d/R it is possible to provide easy 
tuning by making the separation of the end faces adjustable. 
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 If one attempts to excite a particular mode in a cavity, no fields of the right sort 
could be built up unless the exciting frequency were exactly equal to the chosen 
resonance frequency.

 In fact there will not be a delta function singularity, but rather a narrow band of 
frequencies around the eigenfrequency over which excitation can occur.

 An important source of this smearing out of the sharp frequency is the energy 
dissipation in the cavity walls and/or in the dielectric filling the cavity.

 A measure of the sharpness of response of the cavity to external excitation is  

8.8 Power Losses in a Cavity; Q of a Cavity 
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 the frequency separation between half-power points

 To determine the Q of a cavity, consider only the cylindrical cavities
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 The Q of a cavity is the ratio of the volume occupied by the fields to the volume 
of the conductor into which the fields penetrate because of the finite conductivity.

The expression for Q applies  to cavities of arbitrary shape, with an appropriate 
geometrical factor of the order of unity. 

 �For the E1,1,1 mode in the right circular cylinder cavity,

 Possible shifts in frequency cannot be calculated with the energy conservation, 
but the perturbation of boundary conditions again removes these deficiencies. 
With the similar procedures in Sec. 8.6

 The near equality of the real and imaginary parts of the change in �2 is a 
consequence of the boundary condition (13) appropriate for good conductors.
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 An example of a resonant cavity is the earth as one boundary surface and the 
ionosphere as the other.

 The lowest resonant modes are of very low frequency, �~the earth's radius.

 Seawater (	~0.17-1m-1) & ionosphere (	<10-47-1m-1) are not perfect conducting.

 idealize the physical reality and consider as a model two perfectly conducting, 

concentric spheres with radii a(=6400km, earth's radius) and b=a+h (h=100km,  
the ionosphere's height.)

 focus our attention on the TM modes for the lowest freq., with only tangential B.

 the TM modes, with a radially directed E, can satisfy the boundary condition of 
vanishing tangential E at boundaries without radial variation of the fields.

 � the freq. for the lowest TM modes �TM~c/a.

 ��the  modes, with only tangential E, have a radial variation about half a 
wavelength between the boundaries.

� ��The lowest freq. for the  modes �TE~!c/h.

    

8.9 Earth & Ionosphere as a Resonant Cavity: Schumann Resonances 
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 For n>0 the freq. of the modes are larger than �=n!c/h and are in the domain 

��of freq of the  modes. Only for n=0 are there very-low-frequency modes.
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 To 1st-order in h/a the correct result 

has a replaced by a+h/2.
 

 Lightning bolts act as sources of 
radial electric fields. 

 The frequencies near the Schumann 
resonances are preferred because 
they are normal modes of the earth-
ionosphere cavity. 

 The lack of precise agreement is that the assumption of perfectly conducting 
walls is rather far from the truth.

 Q~4-10 for the first few resonances, corresponding to rather heavy damping.

 1st curiosity: A nuclear explosion can decease 3-5% in Schumann resonant freq. 
by the alterations in the ionosphere.

 2nd curiosity: Schumann resonances can serve as a global tropical thermometer, 
due to the Schumann resonant B depends on the freq. of lightning, and the freq. 
of lightning depends on temperature.
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 Transmission via optical fibers falls approximately into two classes:
(1) multimode:   cores are typically 50�m in diameter for a wavelength ~ 1�m;
(2) single-mode: cores are around 5�m diameters.

 consider multimode transmission with the semi-geometrical eikonal or WKB.

 Optical fiber cables, ~2cm in diameter, are actually nests of smaller cables with 
6 or 8 optical fibers protected by secondary coatings and buffer layers.

 The operative fiber consists of a cylindrical core of radius a [2a=O(50�m)] and 

index of refraction n1 surrounded by a cladding of outer radius b [2b=O(150�m)] 

and index of refraction n0<n1.

8.10 Multimode Propagation in Optical Fibers  



  

 Since the wavelength of the light ~ 1�m, the ideas 
of geometrical optics apply; the interface between 
core and cladding can be treated as locally flat.

 If the angle of incidence i of a ray is greater than i0 (i0=sin-1(n0/n1), the critical 
angle for total internal reflection), the ray will be confined and thus propagate.

 Define

 if the indices of refraction decrease layer by layer out from the center, a ray at 
some angle is bent successively more toward the axis until it is totally reflected.
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 for an arbitrary number of layers outside the core, the critical angle          

8max=cos-1(nouter/ninner), just as for the simple two-index fiber.

 The limit of many layers is a gradedgraded index fiber in which the index of refraction 
varies continuously with radius from the axis. 

 With the eikonal approximation, assume the medium is linear, nonconducting, 
nonmagnetic with an index of refraction                             varying in space slowly

 With fields varying as e-i�t
, the Maxwell eqns can give Helmholtz wave eqns

 consider the expansion 
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 The form of / is that of a plane wave with wave vector

 / describes a wave front being locally plane & propagating in the direction of k.

 If we imagine advancing incrementally in the direction of k, we trace out a path 
that is the geometrical ray associated with the wave.

 Rays in a circular fiber fall into two classes: 

1. Meridional rays: rays that pass through the 
cylinder axis; they correspond to modes with 

vanishing m and nonvanishing intensity at 2=0. 

2. Skew rays: rays that originate off-axis and 
whose path is a spiral in space with inner and 
outer turning points in radius; they correspond 

to modes with nonvanishing m and vanishing 
intensity at 2=0. 
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 apply (12) only to the transmission of 
meridional rays in an optical fiber, or to rays 
in a "slab" geometry.

 If n(x) is monotonically decreasing wrt |x|, there is a max (and a min) value of x 

attained by the ray when cos8(xmax)=1

     is a characteristic of a given ray or trajectory. From n(x) we can deduce xmax 
and so delimit the lateral extent of that trajectory.
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 For x�xmax, the path represents
1/4 of a cycle of oscillation. 

 the physical & optical path 
�lengths from A to  are 

 The transit time of a ray is

 Different rays, defined by different 8(0), have different transit times, a form of 
dispersion that is geometrical.

 A signal launched with a nonvanishing angular spread will be distorted unless 

n(x) is chosen to make the transit time largely independent of n.
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 rays with larger initial angles 

and so larger xmax will have longer 
physical paths, but will have 

larger phase velocities c/n in 
those longer arcs; an inherent 
tendency toward equalization 
of transit times. [problem 8.14]



  

 the geometrical ray method of propagation is appropriate when the wavelength 
is short compared to the transverse dimensions of the waveguide, but the wave 
nature of the fields must be taken into account when the 2 scales are comparable. 

 The bound rays (8<8max) in the geometric description are in the bound modes, 
with fields outside the core that decrease exponentially in the radial direction.

 Unbound rays (8>8max) correspond to the radiating modes, with oscillatory fields 
outside the core.

A. Modes in a Planar Slab Dielectric WaveguideA. Modes in a Planar Slab Dielectric Waveguide

 consider a "step-index" planar fiber consisting of a dielectric slab, any ray that 
makes an angle 8 less than 8max is totally internally reflected; the light is confined 

and propagates in the z direction.

 The path can be thought of as 
the normal to the wave front of 
a plane wave, reflected back and 
forth or alternatively as 2 plane 
waves, with x component of 

wave number, kx=±k sin8.

8.11 Modes in Dielectric Waveguides   



  

 To have a stable transverse field configuration and coherent propagation, the 
�transverse phase from A to  (with 2 internal reflections) must be 

 For small 4 �� the  & TM modes 
are almost degenerate.
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 The fields outside the slab also affect the phase /

to 0th-order in 4, the TM modes have transverse electric fields and are degenerate 
��with the  modes.

 The combination of 2 such degenerate modes can give a mode with arbitrary 
direction of polarization in the x-y plane, labeled LP (for linearly polarized).

LP modes are approximate descriptions in a circular fiber, provided 4:1.  
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B. Modes in Circular FibersB. Modes in Circular Fibers 
 For a fiber of uniform cross section with unit relative magnetic permeability and 

an index of refraction that does not vary along the cylinder axis but may vary in 
the transverse directions. 

 in contrast to (4), the eqns for Ez and Hz are coupled. In general there is no 

��separation into purely  or TM modes.

 Focus on a core of a circular cylinder of radius a with /-symmetric index n(2).  
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 for a step-index fiber �t n
2 would vanish, at least for 2<a and for 2>a; but the 

change from n=n1 to n=n2 implies a transverse gradient,

 Only if the fields have no azimuthal variation are these RHS=0; only in such 

��circumstances are there separate  & TM modes�Ez=0 or Hz=0.

 The modes with bothboth Ez and Hz nonzero are known as HE or EH hybrid modes.

 ��the  and TM modes have nonvanishing cutoff frequencies, with the lowest for 

V=n1�a(24/c)1/2=2.405, the 1st root of J0(x). In contrast, the lowest HE mode 

(HE11) has no cutoff frequency.

For 0<V<2.405, HE11 is the only mode that propagates in the fiber. 
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 The azimuthally symmetric 
�� or TM modes correspond 
to meridional rays;

 the HE or EH modes, which 
have azimuthal variation, 
correspond to skew raysskew rays.

 E after reflection will have 
a different projection on the 

z axis than before, as will H.

 Successive reflections mix 
�� and TM waves; the eigen-

modes have both Ez and Hz 

Nonvanishing.

 In fibers with small 4, called weakly guiding waveguidesweakly guiding waveguides, the fields have small 
longitudinal components and are closely transverse. The language of plane light 
waves can be employed.

 an HE11 mode, with azimuthal dependence for Ez of cos/, has fields that are 

approximately linearly polarized and vary as J0(�2), labled as LP01.



  

 For any given finite frequency, only a finite number of the TE and TM modes can 
propagate; the rest are cutoff or evanescent modes.

 Far away from any source/obstacle/aperture in the guide, the fields are simple, 
with only the propagating modes (often just one) present.

 Near a source or obstacle, many modes, both propagating and evanescent, must 
be superposed in order to describe the fields correctly.

 The cutoff modes have sizable amplitudes only near the source or obstacle; their 
effects decay away over distances.

 Problems for a source/obstacle/aperture in a waveguide involves the expansion 
of the fields in terms of all normal modes of the guide, and a determination of the 
amplitudes for the propagating modes that will describe the fields far away.

A. Orthonormal ModesA. Orthonormal Modes 
 ��treat  and TM modes on an equal footing.

 �The fields for the  mode propagating in the ±z direction   

8.12 Expansion in Normal Modes; Fields Generated by a Localized 
Source in a Hollow Metallic Guide
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 The sign in the eqn are from the need to satisfy ��E=��H=0 for each direction 
and the requirement of positive power flow in the direction of propagation.

 normalization condition by taking the transverse electric fields to be real and
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B. Expansion of Arbitrary FieldsB. Expansion of Arbitrary Fields 

 An arbitrary EM field with time dependence e-i�t
 can be expanded in terms of the 

normal mode fields

 TheoremTheorem: The fields everywhere in the guide are determined uniquely by 

specification of the transverse components of E and H in a plane, z=constant.

Proof:

                                                           If Et and Ht are given at z=0, the coefficients

                                                                              in the expansion are determined. 
 The completeness of the normal mode 

expansion assures the uniqueness of the 

representation for all z.  

C. Fields Generated by a Localized SourceC. Fields Generated by a Localized Source 
 The current density is assumed to vary in time  

e-i�t
 and fields propagate to the left and to the right.
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 On and to the left of the surface S-, varying as

 To determine the coefficients A�
± in terms of J,

 the amplitude for propagation in the positive z direction comes from integration 

of the scalar product of the current with the mode propagating in the negative z 
direction, and vice versa.

 for the presence of apertures in the walls between the 2 planes S+ and S-
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