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 A feature of the Maxwell eqns is the existence of traveling wave solutions.

 The simplest and most fundamental EM waves are transverse, plane waves.

 If no sources,

 Assume solutions with harmonic time dependence e-i�t

 If the plane wave travels in the x-direction,

 The primordial solution in 1d    

7.1 Plane Waves in a Nonconducting Medium  
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 If the medium is nondispersive (�� independent of frequency)

waves traveling in the positive and negative x directions with phase velocity.

 If the medium is dispersive, the wave changes shape as it propagates.

 consider an EM plane wave to satisfy both the Helmholtz wave & Maxwell eqns

 cB and E have the same dimensions, ie, the same magnitude for plane EM waves 
in free space and differ by the index of refraction in ponderable media.
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 The Poynting vector

 The time-averaged energy density

 The surfaces of constant amplitude and constant phase are still planes, but they 
are no longer parallel. 

 For ��0, E  in general has components in the direction(s) of n.

 Inhomogeneous plane waves form a general basis for the treatment of boundary-
value problems for waves and are useful in the solution of diffraction in 2d.   
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 If a plane wave with its electric field vector is always in one direction, it is 
linearly polarized.

 Two waves can be combined to give the most general homogeneous plane wave 
propagating in one direction,

 If Е1 and E2 have the same phase, the wave is a 

linearly polarized wave, with its polarization 

vector making an angle �=tan-1(E2/Е1) with �1 

and magnitude

 If Е1 and Е2 have different phases, the wave is elliptically polarized.

 If |Е1|=|Е2|=Е0, but the phase difference is 90°, this is circular polarization.   

7.2 Linear and Circular Polarization; Stokes Parameters 
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  At a fixed point in space, the electric vector is constant in 
magnitude, but sweeps in a circle at a frequency �.

 For (�1+i�2) [(�1-i�2)], the rotation of E is counter-
clockwise (clockwise) when looking into the 

oncoming wave. This wave is called left (right) 

circularly polarized, orpositive (negative) helicity.

 If Е+�Е-, but the same phase, the wave represents an elliptically polarized wave 
with principal axes of the ellipse in the directions of �1 and �2

 If                    , the ellipse traced out by the E vector has its axes rotated by an 
                          angle �/2.

 For r=±1 we get back a linearly polarized wave.   
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 how can we determine from observations on the wave the state    of polarization 

in all its particulars? � Stokes parameters

 Stokes parameters are quadratic in the field strength and 
can be determined through intensity measurements only, 
with a linear polarizer & a quarter-wave plate.
 
The measurement determines completely the state 

of polarization of the wave.

 The squares of these amplitudes give a measure of the 
intensity of each type of polarization. Phase information 
can be obtained from cross products.
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 s0 measures the relative intensity of the wave. In the linear basis, s1 gives the 

preponderance of x-linear polarization over y-linear polarization, s2 & s3 give 

phase information. In the circular basis, s3 has the interpretation of the difference 

in relative intensity of positive and negative helicity, s1 & s2 concern the phases.

 The 4 Stokes parameters are not independent, they depend on only 3 quantities,

 No beams of radiation are completely monochromatic
 + the magnitudes and phases vary slowly in time. 
� the observable Stokes parameters become averages over a time interval,
 

  
 An astrophysical example of the use of Stokes parameters is to study of optical 

and radio frequency radiation from the Crab nebula. The optical light shows small 
 linear polarization, the radio emission shows a high degree of linear polarization. 
In both frequency there is no evidence for circular polarization.  
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 The phenomena of the reflection and refraction of light at a plane surface 
between 2 media can be divided themselves into 2 classes: 

1. Kinematic properties1. Kinematic properties: 

(a) Angle of reflection=angle of incidence;           (b) Snell's law: 

2. Dynamic properties2. Dynamic properties: 

(a) Intensities of reflected & refracted radiation. (b) Phase change & polarization. 

 The kinematic properties follow from the wave nature 
of the phenomena & boundary conditions. The dynamic 
properties depend on the specific nature of EM fields & 
their boundary conditions.

  

7.3 Reflection and Refraction of Electromagnetic Waves at a Plane 
Interface Between Dielectrics 
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 The dynamic properties are contained in the boundary conditions
  (1) normal components of D and � are continuous;
  (2) tangential components of E and H are continuous.

 consider 2 separate situations:
(1) the incident plane wave is linearly polarized with its polarization vector � to 
     the plane of incidence (defined by k & n), 
(2) the polarization vector is � to the plane of incidence.

 The general case of arbitrary elliptic polarization can be obtained by linear 
combinations of the 2 results.
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 For the electric field � to the plane of incidence

 For optical frequencies it usually put �/�' = 1.

 For the electric field � to the plane of incidence  
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 For normal incidence (i=0), both sets of eqns reduce to

 For n'>n there is a phase reversal for the reflected wave at normal incidence.

 Selected problems: 7.2, 7.5, 7.6, 7.7  



  

 for polarization � to the plane of incidence there is an angle of incidence, called 

Brewster's angle, for which there is no reflected wave.

 If a plane wave of mixed polarization is incident on a plane interface at the 

Brewster angle, the reflected radiation is completely plane-polarized with 
polarization vector � to the plane of incidence.

 Even if the angles is other than the Brewster angle, there is a tendency for the 
reflected wave to be predominantly polarized � to the plane of incidence.

 This behavior can be used to produce beams of plane-polarized light.

 Receiving antennas can be oriented to discriminate against noises in favor of the 
directly transmitted wave.

 Total internal reflectionTotal internal reflection: the refracted wave is propagated � to the surface.

 �internal�: the incident wave is in a medium of larger index of refraction, n>n'.  

7.4 Polarization by Reflection and Total Internal Reflection; 
     Goos-Hänchen Effect 
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 At i=i0, it is a total internal reflection. Thus no energy flows across the surface. 

 for i>i0, the refracted wave is propagated only parallel to the surface and is 
attenuated exponentially beyond the interface. 

 The attenuation occurs in a few wavelengths of the boundary, except for i�i0.

 Even though fields exist on the other side of the surface there is no energy flow 

through the surface. Hence total internal reflection occurs for i�i0.

 |E�0/E0|=1 for total internal reflection, but the reflected wave suffers a phase 
change that is different for the 2 kinds of incidence and depends on the angle of 

incidence and on n/n'. 
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 The phase changes can be used to convert one kind of polarization into another.

 Fresnel's rhombus is to convert linearly polarized light with equal amplitudes in 
the plane of incidence and � to it into circularly polarized light by 2 successive 
internal reflections, each involving a relative phase change of 45°.

 The wave penetrating into the region z>0 has an exponential decay in the

perpendicular direction,

 Goos-HGoos-Häänchen effectnchen effect: If a beam of radiation having a finite transverse extent 
undergoes total internal reflection, the reflected beam emerges displaced laterally 
with respect to the prediction of a geometrical ray reflected at the boundary.

 The 1st-order D for the 2 states of linear polarization

 The internal reflection is useful to transmit light without 
loss in intensity. 

 In telecommunications, optical fibers exploit total 
internal reflection for transmission of modulated 
light signals over long distances. 
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 all the results of the preceding sections involving a single frequency component 
are valid in the presence of dispersion.

 Where a superposition of a range of frequencies occurs, new effects arise as a 
result of the frequency dependence of � and �.

A. Simple Model for A. Simple Model for ��((��)) 
 Almost all of the physics of dispersion is illustrated by an extension to time-

varying fields of the classical model for the molecular polarizability.

 Without differing between the applied electric field and the local field, the model 
is appropriate only for substances of low density.

 The equation of motion for an electron

 Magnetic forces are neglected. The amplitude of oscillation is small enough to 
permit evaluation of the electric field at the average position of the electron.

 the dipole moment of the electron       

7.5 Frequency Dispersion Characteristics of Dielectrics,  
     Conductors, and Plasmas
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B. Anomolous Dispersion and Resonant AbsorptionB. Anomolous Dispersion and Resonant Absorption 

 Generally

 At low frequencies, below the smallest �j, all the terms in (*) contribute with the 

same positive sign and �[�(�)]/�0>1.

 As successive �j values are passed, 

more negative terms occur, until the 
whole sum is negative and �[�(�)]/�0<1. 

 Near any �j, the real part of the 

denominator in (*) vanishes for �=�j 

and the term is large &  imaginary, thus  there is rather violent behavior.

 Normal dispersionNormal dispersion is associated with an increase in Re[�(�)] with �, anomalous anomalous 

dispersiondispersion with the reverse.

 Normal dispersion occurs everywhere 
except near a resonant frequency. And 
only where there is anomalous 
dispersion is the imaginary part of � 
appreciable.
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 Im[ ]� >0 represents dissipation of energy from the EM wave into the medium, 

the regions where Im[�] is large are called regions of resonant absorption. 

 If Im[�]<0, the medium gives energy to the wave; amplification occurs, as in a 
maser or laser. 

�. Low-Frequency Behavior, Electric Conductivity�. Low-Frequency Behavior, Electric Conductivity 
 For insulators the lowest resonant frequency is different from zero.

 If some fraction f0 of the electrons per molecule are "free", ie, �0=0, the 
dielectric constant is singular at �=0.   
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 check the singular behavior in the Maxwell-Ampere equation

 For copper:

 At higher frequencies the conductivity is complex and like the above eqn for -.

 The problem of electrical conductivity is really a quantum-mechanical one.

 The free electrons are actually valence electrons of the isolated atoms that 
become quasi-free and move relatively unimpeded through the lattice.

 The damping effects come from collisions involving appreciable momentum 
transfer between the electrons and lattice vibrations, etc.

 If the medium possesses free electrons it is a conductor at low frequencies; 
otherwise, an insulator.
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 At nonzero frequencies the conductivity only appears as a resonant amplitude.

 The dispersive properties of the medium can be attributed as a complex 
dielectric constant or a frequency-dependent conductivity & a dielectric constant.

D. High-Frequency Limit, Plasma FrequencyD. High-Frequency Limit, Plasma Frequency
 At frequencies far above the highest resonant frequency

�p, depending only on the total number NZ of electrons per unit volume, is called 

the plasma frequency of the medium.

 In the case the dielectric constant is close to one, and increases with frequency. 
The wave number is real and varies with frequency.

 in the ionosphere or in a tenuous electronic plasma, the electrons are free and 

the damping is negligible, (#) holds even for �<�p. k is purely imaginary.

 Such waves incident on a plasma are reflected and the fields inside fall off 
exponentially with distance from the surface.
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 The expulsion of fields from within a plasma is a well-known effect in controlled 
thermonuclear processes and in attempts at confinement of hot plasma.

 For the reflectivity of metals, at high frequencies �0'0

 The light penetrates a short distance in the metal & is almost entirely reflected.

 when the frequency is increased into the domain where �(�)> 0, the metal 
suddenly can transmit light and its reflectivity changes drastically.

 occurs typically in the ultraviolet leading to "ultraviolet transparency of metals." 

 Determination of the critical frequency gives information on the density or the 
effective mass of the conduction electrons.
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 As the frequency increases toward 
1011 Hz, the absorption coefficient 
increases to �,104m-1, leading to an 
attenuation length of 100 �m in 
liquid water.

 This is the microwave absorption by 
water. It is the phenomenon (in moist 
air) that terminated the trend toward 
 better resolution in radar by going 
to shorter wavelengths in WWII.

 In the infrared region absorption 
bands associated with vibrational 
modes and oscillations of the
molecule cause the absorption to 
reach peak values of �,106m-1.

 411014Hz-811014Hz is a dramatic 

absorption window called the 

visible region.

 In the far ultraviolet the absorption 
has a peak value of �,1.11108m-1 

at v,511015Hz (21 eV).
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 This is exactly at the plasmon energy 3�p, corresponding to a collective 

excitation of all the electrons in the molecule.

At higher frequencies the photoelectric effect will shows, and then Compton 
scattering and other high-energy processes take over.

 At low frequencies, seawater has an electrical conductivity -,4.4.-1m-1.

 At 102 Hz, the attenuation length in seawater is �-1,10 meters. It means that 1% 
of the intensity at the surface will survive at 50 meters below the surface.

 One can consider extremely low-frequency (ELF) communications to send 
message to submarines.

 The resonances of the earth-ionosphere cavity from 8Hz to a few hundred hertz  
reduce the attenuation & make the region of the frequency spectrum attractive. 
With wavelengths of the order of 51103km, very large antennas are needed.
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 The ionosphereionosphere is the uppermost part of the atmosphere, distinguished 
because it is ionized by solar radiation.

 The propagation of EM waves in the ionosphere can be described approximately 
by �/�b=1-�p

2/�2, but Earth's magnetic field modifies the behavior significantly.

 consider a tenuous electronic plasma of uniform density with a static, uniform, 
B0 and transverse waves propagating parallel to the direction of B0.

 The frequency dependence of x can be understood by transforming the EOM to 
a coordinate system precessing with frequency �B about the direction of B0, but 
without the existence of B0.

 

 For propagation antiparallel to the magnetic field B0, the signs are reversed.

7.6 Simplified Model of Propagation 
in the Ionosphere & Magnetosphere
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 For propagation other than � to B0 the precession frequency is interpreted as 
that due to only the component of B0 � to the direction of propagation. This 
means �B =�B(angle)�the medium is not only birefringent, but also anisotropic.

 In the plots, 
there are wide 
intervals of 
frequency 
where one of �+ 
or �� is positive 
while the other 
is negative.

 At such 
frequencies one 
state of circular 
polarization can 
not propagate 
in the plasma.

for n,10
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 Consequently the wave of one polarization incident on the plasma will be totally 
reflected. The other state of polarization will be partially transmitted.

 when a linearly polarized wave is incident on a plasma, the reflected wave will 
be elliptically polarized.

 Thus the ionosphere can reflect radio waves.

 The electron densities at various heights can be inferred by studying the 
reflection of pulses of radiation transmitted vertically upwards.

 When the density is large enough

 h1: the time interval between 
the initial transmission & 
reception of the reflected signal.

 varying the frequency and 
studying the time intervals
the electron density as a function 
of height can be determined.

 The frequency above which 
reflections disappear determines 
the maximum electron density in a given layer.
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 The behavior of ��(�) at low frequencies is responsible for a magnetospheric 
propagation phenomenon called "whistlers."

 Pulses of radiation at different frequencies travel at different speeds: the lower
the frequency, the slower the speed.

 The radiation from a thunderstorm gives rise at 105Hz and below to whistlers, a 
whistlelike sound beginning at high audio frequencies and falling rapidly through 
the audible range.
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 in conducting fluids or dense ionized gases, collisions are rapid that Ohm's law 
holds for a wide range of frequencies.

 Under the applied fields the electrons and ions move in such a way that there is 
no separation of charge, although there can be current flow.

 The nonrelativistic mechanical motion of charge is described as a conducting 
fluid with the hydrodynamic variables of density, velocity, and pressure, with EM 

and gravitational forces. It is called as magnetohydrodynamicsmagnetohydrodynamics (MHDMHD).

 Ohm's law

 Diffusion eqn

assumed that the conductivity and permeability are independent of position.

 Consider a compressible, nonviscous, "perfectly conducting"(ie, -56) fluid 
without gravity, but in an external magnetic field�the diffusion time is long.

 The hydrodynamic eqns

7.7 Magnetohydrodynamic Waves
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 The magnetic force can be written as

 The hydrodynamic eqns must be supplemented by an equation of state.

 Without magnetic field, the mechanical eqns can describe small-amplitude, 
longitudinal, compressional (sound) waves with a sound speed,

 By analogy, longitudinal MHD waves in a conducting fluid in an external field, 
with a speed

 for small-amplitude departures from equilibrium, 
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 2 types of wave motion possible in this case:

  (1) an ordinary longitudinal wave (v1� to k and vA) with phase velocity ulong=s.

  (2) a transverse wave (v1�vA=0) with a phase velocity utrans=v
A
.

 This Alfvén wave is a purely MHD phenomenon, which depends only on the 
magnetic field (tension) and the density (inertia).

 In usual laboratories the Alfvén velocity is much less than the speed of sound.

 In astrophysical problems, the Alfvén velocity can become very large because of 
the much smaller densities.

 In the sun's photosphere, 7,10
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 The magnetic fields of different waves

 The magnetosonic wave moving � to 
B0 causes compressions and rarefactions 
in the lines of force without changing 
their direction.

 The Alfvén wave � to B0 causes the lines of force 
to oscillate back and forth laterally.

 In either case the lines of force are "frozen in" and 
move with the fluid.
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 Even in the most monochromatic light source or the most sharply tuned radio 
transmitter/receiver, one deals with a finite spread of frequencies or wavelengths.

 Since the basic equations are linear, the linear superposition of solutions with 
different frequencies works.

 new features:

1. If the medium is dispersive, ie, �=�(�), the phase velocity is not the same for 
each frequency component of the wave. Thus different components of the wave 
travel with different speeds to change phase with respect to one another. 

2. In a dispersive medium the velocity of energy flow may differ from the phase 
velocity, or may even lack precise meaning.

3. In a dissipative medium, a pulse of radiation will be attenuated as it travels 
with or without distortion.

 consider   

7.8 Superposition of Waves in 1D; Group Velocity 
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 If

 If u(x,0) is a finite wave train with a length of :x, the amplitude A(k) is a peaked 

function with a breadth of :k, centered around a wave number k0, dominant wave 

number in the modulated wave u(x,0).

 If :x and :k are defined as the rms 
deviations from the average values 

of x and k   

 It means that short wave trains with a
few wavelengths have a very wide distri-
bution of wave numbers of monochromatic 
waves, and long sinusoidal wave trains 
are almost monochromatic.

 The different frequency components 
in the wave move at different phase 
velocities. 

 Thus the original coherence will be lost 
& the pulse to become distorted in shape.
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the pulse travels along undistorted in shape with the group velocity: 

 in this approximation the transport of energy occurs with the group velocity, 
since that is the rate at which the pulse travels along.

 For light waves

 For normal dispersion dn/d�>0, n>1, then the velocity of energy flow is less 
than the phase velocity and also less than c.

 In regions of anomalous dispersion, dn/d� can become large & negative, then vg 

differs greatly from vp, often becoming larger than c or even negative.

 Group velocity is generally not a useful concept in regions of anomalous 
dispersion; no idea of special relativity will be violated.    
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 a large dn/d� means a rapid variation 

of � with n. Eqn (1) & the following
eqns in this section then are no longer 
valid.

 Usually a pulse with its dominant 
frequency components near a strong 
absorption line is absorbed and distorted
as it travels.

 if absorbers are not too thick, a 
Gaussian pulse with a central 
frequency near an absorption line and 
with support narrow compared to the 
width of the line propagates with 
appreciable absorption, but more or less 
retains its shape, the peak of which 
moves at the group velocity, even when that quantity is negative.

 It is a pulse reshaping�the leading edge of the pulse is less attenuated than the 
trailing edge.

 Conditions can be that the peak of the attenuated pulse emerges from the 
absorber before the peak of the incident pulse has entered it! (That is the 
meaning of negative group velocity.)    



  

 Since a Gaussian pulse does not have a sharply defined front edge, no question 
of causality violation.

 Some experiments show that photons travel faster than the speed of light 
through optical devices. While it is true that the centroid of the very small 
transmitted Gaussian pulse appears slightly in advance of the vacuum transit 
time, no signal or information travels faster than the speed of light.



  

 the proper specification of an initial-value problem for the wave eqn demands 
the initial values of both the function & its time derivative

7.9 Illustration of the Spreading of a Pulse as It Propagates in a 
Dispersive Medium 
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The eqn represents 2 pulses traveling in opposite directions.

 The peak amplitude of each pulse travels with the group velocity, while the 
modulation envelop remains Gaussian in shape.

 The width of the Gaussian is not constant, but increases with time

the dispersive effects on the pulse are greater, the sharper the envelope.

 at long times the width of the Gaussian increases linearly with time

but the time of attainment of this asymptotic form depends on the ratio L/a.

 Although the results above have been derived for a special choice, their 
implications are of a more general nature.  
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 the average velocity of a pulse is the group velocity.

 The spreading of the pulse must have a spread of wave numbers

a narrow pulse spreads rapidly because of its broad spectrum of wave numbers, 
and vice versa. 

 All these ideas form the basis of the Heisenberg uncertainty principle.
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A. Nonlocality in TimeA. Nonlocality in Time

 The eqns give a nonlocal connection between D and E, ie, D at time t depends 

on the electric field at times other than t. 

 If �(�) is independent of �, then G(<))�(<) and the instantaneous connection is 

obtained, but if �(�) varies with �, G(<) is nonvanishing for some <�0. 

            = susceptibility kernel

7.10 Causality in the Connection Between D and E; 
       Kramers-Kronig Relations 
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<� : step function

 For <<0 the contour can be closed in the upper half-plane. Since the integrand 
is regular inside the closed contour, the integral vanishes.

 For <>0, the contour is closed in the lower half-plane and the integral is -2"i 
times the residues at the 2 poles.

The kernel G(<) is oscillatory with the characteristic frequency of the medium and 
damped in time with the damping constant of the electronic oscillators.

 The nonlocality in time of the connection between D and E is of the order of '-1.

 ' is the width in frequency of spectral lines and typically 107-109s-1, thus the 
departure from simultaneity is of the order of 10-7-10-9s.

 For frequencies above the microwave many cycles of the electric field 

oscillations contribute an average weighed by G(<) to D at a given instant of time. 

 The eqn is nonlocal in time, but not in space. This approximation is valid if the 
spatial variation of the applied fields has a scale that is large compared with the 
scale of the atomic/molecular polarization.
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 For bound charges the scale of polarization is of the order of atomic dimensions, 
so the concept of a dielectric constant that is a function only of � holds.

 For conductors, the free charges with macroscopic mean free paths makes the 
assumption of a simple �(�) break down at much lower frequencies.

 For copper '0~311013s-1 at 300K;  '0~311010s-1 at 4K.

 The electron's velocity in metals is c/137 (Bohr velocity in hydrogen), so the 

mean free path L~c/(137'0)~10-4m, but the conventional skin depth is 10-8-10-7m.

 In the circumstances, Ohm's law must be replaced by a nonlocal expression. The 
conductivity becomes a tensorial quantity depending on k and frequency �.

 The departures from the standard behavior are the anomalous skin effect. They 
can be used to map out the Fermi surfaces in metals.

 Similar nonlocal effects occur in superconductors where the EM properties 
involve a coherence length of the order of 10-6 m.

C. Causality and Analyticity Domain C. Causality and Analyticity Domain ��((��)) 

 The most obvious and fundamental feature of the kernel is G(<<0)=0.

only values of the electric field prior to the time t determine the displacement in 
accord with causality.               



the most general spatially local, linear, and causal relation that can be written 
between D and E in a uniform isotropic medium.

 �(�)/�0 is an analytic function in the upper half-plane of the complex � plane.

 For the physical requirement, G(<56)50 to assure �(�)/�0 is also analytic.

 It is true for dielectrics, but not for conductors, where G(<56)5-/�0 and �(�)/�0 

has a simple pole at �=0, ie, �(�50)5i-/�. Apart from a possible pole at �=0, 
the dielectric constant �(�)/�0 is analytic for Im�>0.

 The behavior of �(�00)/�0 can be related to the behavior of G(<50)

G'(<50). 
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D. Kramers-Kronig RelationsD. Kramers-Kronig Relations 

 For any point z inside a closed contour C in the upper half-�-plane, Cauchy's Cauchy's 
theoremtheorem gives   
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 The approximation exhibits the rapid variation of Re[�(�)] in the neighborhood 
of an absorption line.

 Relations (a) &(b) connecting the dispersive & absorptive aspects of a process 
are useful in all areas of physics since very small number of physical assumptions 
are necessary for their derivation.

 The plasma frequency can be defined as

The relation is the sum rule for oscillator strengthsthe sum rule for oscillator strengths fi in Sec 7.5 but more general.  
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 With the assumption

 For conductors, the 1st sum rule still holds, but the 2nd sum rule has an added 

term -"-/2�0N on rhs [Problem 7.23]. 
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 consider a plane wave train normally incident from vacuum on a semi-infinite 

uniform medium of index of refraction n(�) 

 u(0,t<0)=0 assures that A(�) is analytic in the upper half-�-plane. Generally, 

A(�) have singularities in the lower half-�-plane. Assume A(|�|56) is bounded.

 n(�) is analytic in the upper half-�-plane, just as � 

 A simple one-resonance 

model of n(�) with resonant 
frequency � and damping 
constant ' leads to a singularity structure.

 The poles of �(�) become branch cuts in n(�).  

7.11 Arrival of a Signal After Propagation Through a Dispersive 
Medium
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obtain a zero contribution to the integral by closing the contour with a semicircle 

at infinity in the upper half-plane for x>ct 

 Since the specific form of n(�) does not enter, we have a general proof that no 
signal propagates with a velocity greater than c, whatever the medium.

 For x<ct, the contour is closed in the lower half-plane, having the singularities.

 The method of stationary phasemethod of stationary phase is based on the idea that the phase A(�) in an 
integral is usually large and rapidly varying. So the integrand averages almost to 
0. Exceptions occur when A(�) is "stationary," ie, when A(�) has an extremum. 
The integral can therefore be estimated by approximating the integral at each of 
the points of stationary phase and summing these contributions.

 The earliest part of the wave occurs when t/t051, the point of stationary phase is 
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 The incident wave's A(�s) should be very small. So the earliest part of the signal 

is small and of high frequency, bearing no resemblance to incident wave. This 

part of the signal is called the 1st or Sommerfeld precursor.

 Only when t/t0 reaches n(0) is a qualitative change in the amplitude.

 �=0 is now a point of stationary phase, the high frequency of oscillation is 

replaced by lower frequencies. More important is d2k/d�2(0)=0 (	 dn/d�(0)=0 
for symmetry.) In such situations, A�=0, thus the stationary phase approximation 
fails, giving an infinite result.

 Improve the approximation to include cubic terms in A(���s). The amplitude is 

expressible in terms of Airy integrals. The wave becomes large in amplitude and 

of long period for  t�n(0)t0. This phase is called the 2nd or Brillouin precursor.

 Later, the behavior of A(�) dominate the integral. Thus the main part of the 
wave has arrived. The amplitude behaves as if it were the initial wave with the 
appropriate phase velocity and attenuation.
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