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 the radical difference between magnetostatics and electrostatics: there are no there are no 

free magnetic chargesfree magnetic charges.

 The basic entity in magnetic studies is a magnetic dipole.

 The definition of the magnetic-flux density (or magnetic induction):

 The magnetic phenomena was clearly understood after the connection between 
currents and magnetic fields was established.

 Conservation of charge

a decrease in charge inside a small volume with time must correspond to a flow of 
charge out through the surface of the small volume.

 In magnetostatics, no change in the net charge density anywhere in space
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 It is incorrect to think of the eqn as the 
magnetic equivalent of the electric field of

a point charge and to identify Id� as the analog of q. 

 The eqn has meaning only as one element of a sum over a continuous set, the 
sum representing the magnetic induction of a current loop or circuit.

 One apparent way out of this difficulty is

 this expression is time dependent, and valid only 
for small velocities  and negligible accelerations.

 For the magnetic induction of the long straight wire

 the magnitude of the magnetic induction varies with R 
in the same way as the electric field due to a long line 
charge of uniform linear-charge density.

5.2 Biot & Savart Law 
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 Ampere's experiments were concerned 
with the force that one current-carrying 
wire experiences in the presence of another

symmetric in d�1 and d�2 and satisfies Newton's 3rd law.

 For two long, parallel, straight wires                           . The force is attractive

(repulsive) if the currents flow in the same (opposite) directions.

 If a current density is in an external magnetic-flux density, the total force and 
the total torque are 
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5.3 Differential Equations of Magnetostatics and Ampere's Law 
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 Ampere's law can be used for calculation of 
the magnetic field in highly symmetric cases. 
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 The basic differential laws of magnetostatics

 If

 We can apply all the techniques for the electrostatic problems to it, but the 
boundary conditions are different from those in electrostatics and macroscopic 
magnetic properties are usually involved.

 The freedom of gauge transformations allows us to make ��A have any 
convenient functional form we wish.

 It can be understood as:    
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 cylindrical symmetry � observe in the x-z plane

� eqn (2) is symmetric about �'=0 

� Jx does not contribute        

5.5 Vector Potential & Magnetic 
Induction for a Circular Current Loop 
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 These can be specialized into 3 regions, near the axis (��1), near the center of 

the loop (r�a), and far from the loop (r�a).

 use a spherical harmonic expansion to point out similarities and differences 
between the magnetostatic and electrostatic problems. Expand |x-x'|-1,   
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 Associated Legendre polynomials appear as well as Legendre polynomials. This 
can be traced to the vector character of the current and vector potential, as 
opposed to the scalar properties of charge and electrostatic potential.

 Can also employ an expansion in cylindrical coordinates to attack this problem.



  

 

5.6 Magnetic Fields of a Localized Current Distribution, Magnetic 
Moment
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 The classical connection between angular momentum and magnetic moment 
holds for orbital motion, but fails for the intrinsic moment.

 For electrons, the intrinsic moment is twice as large as the above. We speak of 

the electron having a g factor of 2.

 There are 2 limits, one is that the sphere of radius R contains all of the current 
and the other is that the current is completely external to the spherical volume.
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 The force represents the change rate of the total mechanical momentum, includ-
ing the "hidden mechanical momentum" associated with the EM momentum.

 a charged particle in a uniform magnetic induction moves in a circle at ' angles 
to the field and with constant velocity ( to the field, tracing out a helical path.

 If the field is not uniform but has a small gradient, the motion of the particle can 
be affected by the force on the equivalent magnetic moment.

5.7 Force and Torque on and Energy of a Localized Current 
Distribution in an External Magnetic Induction
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 interpret the force as the negative gradient of a potential energy
 a dipole tends to orient itself parallel to the field to have lowest potential energy. 

 The potential energy is not the total energy of the magnetic moment in the 
external field. Work is needed to keep the current, producing m, constant. 

 The potential energy expression can be employed in the treatment of magnetic 
effects on atom, as in the Zeeman effect or for the fine and hyperfine structure. 

 The fine structure comes from differences in energy of an electron's intrinsic 
magnetic moment in the magnetic field seen in its rest frame [chapter 11].

 The hyperfine interaction is that of the magnetic moment of the nucleus with the 
magnetic field produced by the electron. 
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 The expectation values of the Hamiltonian in the various atomic (and nuclear 
spin) states yield the hyperfine energy shifts.

 For spherically symmetric s states only  the 2nd term of (6) has value:

 For ��0, the hyperfine energy comes entirely from the 1st term of (6) because 
the wave functions for ��0 vanish at the origin.

 � e points in the opposite direction to the electron's spin because e is negative.

 +E between the singlet and triplet states of the 1s state of atomic hydrogen is 

the source of the famous 21cm line in astrophysics.

 Comparing eqn (4.20) & (5.64), if the magnetic moments were caused by 

magnetic charges, the coefficient 8
/3 in +E would be replaced by -4
/3!

 The astrophysical hyperfine line of hydrogen would be at 42cm wavelength, and 
the singlet and triplet states would be reversed.
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 In macroscopic problems the current density is not a known function of position. 
Only its average over a macroscopic volume is known or pertinent.

 average macroscopic magnetization

 Suppose there is also a macroscopic current density

5.8 Macroscopic Equations, Boundary Conditions on � and H 
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 The fundamental fields are E & B. The derived fields D & H are introduced for 
convenience to permit us to take into account in an average way the contributions 

to � and J of the atomic charges and currents.

 To complete the description of macroscopic magnetostatics, there must be a 
constitutive relation between H and B.

 The phenomenon of hysteresishysteresis implies that � is not a 
single-valued function of H. In fact, F(H) depends on the 
history of preparation of the material.

 assuming � ( H 

 For high-permeability substances, �(H)/�0 can be as 

high as 106. Typical values of initial relative permeability 
range from 10 to 104. 

 For the boundary conditions at an interface   

B=�H � isotropic diamagnetic and paramagnetic substances, linear

B=F �H� � ferromagnetic substances, nonlinear � : magnetic permeability

n��B
2
�B

1
�=0

n× �H
2
�H

1
�=K

� n : normal vector

K : surface current density

� � �H�!
d B

d H



  

 For media satisfying linearlinear relations

independent of the direction 
of H1 (except H1/n).

 The boundary condition on 
H at the surface of a material 
of very high permeability is 
 the same as for the electric field at the surface of a conductor.

 We may therefore use electrostatic potential theory for the magnetic field. The 
surfaces of the high-permeability material are approximately "equipotentials," and 
the lines of H are normal to these equipotentials. 
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 The basic equations of magnetostatics

  A. Generally Applicable Method of the Vector PotentialA. Generally Applicable Method of the Vector Potential

 parallels the treatment of uniform isotropic dielectric media. The boundary 
conditions must be matched across the interface.

B. B. JJ=0; Magnetic Scalar Potential=0; Magnetic Scalar Potential

 �M can also be use for closed loops of current. Then �M is proportional to the 

solid angle subtended by the boundary of the loop at the observation point 
[Problem 5.1]. Such a potential is evidently multiple-valued.

5.9 Methods of Solving Boundary Value Problems in Magnetostatics
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�. Hard Ferromagnets (M given and �. Hard Ferromagnets (M given and JJ=0)=0)

 "hard" ferromagnets has a magnetization that is independent of applied fields 
for moderate field strengths. Such materials can be treated as if they had a fixed, 
specified magnetization.

(a) Scalar Potential(a) Scalar Potential

 an arbitrary localized distribution of magnetization asymptotically has a dipole 
field with strength given by the total magnetic moment of the distribution.

 if a "hard" ferromagnet has a volume and surface, we specify M inside the 
volume and assume that it falls suddenly to zero at the surface, and assign an 

effective magnetic surface-charge density
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 (7) is generally applicable even for the limit of discontinuous distributions of M. 

Never combine the surface integral of 1M with (7)!

(b) Vector Potential(b) Vector Potential

 If the distribution of M is discontinuous, a surface integral is needed.

 If M is constant throughout the volume, only the surface integral survives.
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 Cosider part C(a) of the previous section,

 Bin is parallel to M, while Hin is 
antiparallel.

 For the sphere with uniform 
M, the fields are not only dipole 
asymptotically, but also close 
to the sphere.

 For this geometry (and this only) 
there are no higher multipoles.

5.10 Uniformly Magnetized Sphere

M=M 0 e3, 1
M
=n�M=M 0 cos �

� �
M
�r , ��=

M
0

a
2

4 

� cos � '

	x�x '	
d � '

=
1

3
M

0
a

2
r

<

r
>

2
cos � � only the �=1

term survives
�

r
<
=min �a , r �

r
>
=max �a , r �

r%a � �
M
=

1

3
M

0
r cos �=

1

3
M

0
z � H

in
=�

1

3
M , B

in
=

2 �
0

3
M

r&a � �
M
=

1

3
M

0
a

3 cos �

r
2

� m=
4 
 a

3

3
M

HB



  

 The lines of � are continuous closed paths, but those of H terminate on the 
surface because there is an effective surface-charge density.

 Use part C(b)

 azimuthal symmetry � choose the observation point in the x-z plane (�=0)

                                    � only the y component of M×n' survives
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 Consider in the space

 Consider a paramagnetic or diamagnetic sphere of permeability �, M comes 
from the external field

analogous to the polarization of a dielectric sphere in a uniform electric field.

 For a ferromagnetic substance, the above argument fails because the existence 
of permanent magnets contradicts this result.

 The nonlinear constitutive relation and the phenomenon 
of hysteresis allow the creation of permanent magnets.

 the slope of the lines range from zero for a flat disc to -2 
for a long needle-like object. Thus a larger internal 
magnetic induction can be obtained with a rod geometry 
than with the other shapes.     

5.11 Magnetized Sphere in an External Field; Permanent Magnets
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 Cosider B0=�0H0 in an empty space. A permeable body is placed in the region. 

 For high permeability, the field lines should tend to be normal to the body�s 
surface. If the body is hollow, the field in the cavity should be smaller than the 

external field, vanishing in the limit ��, ie, magnetic shielding.

 

5.12 Magnetic Shielding, Spherical Shell of Permeable Material in 
a Uniform Field

J=0 � H=�� �
M

� [B=� H��B=0
� ��H=0 � �2�

M
=0

r&b � �
M
=�H

0
r cos ��"

j=0


3�

r
��1

P� �cos ��

a%r%b � �
M
="

j=0



�4� r
�
�
5�

r
��1 � P� �cos ��

r%a � �
M
="

j=0



�� r
�

P� �cos ��

�

� �
M

� �
�b

+
�=

� �
M

� �
�b

-
� ,

� �
M

� �
�a

+
�=

� �
M

� �
�a

-
�

�
0

� �
M

� r
�b

+
�=�

� �
M

� r
�b

-
� , �

� �
M

� r
�a

+
�=�

0

� �
M

� r
�a

-
�

�
H � & B

r
are continuous

at r=a & r=b

B0



  

� [
31� b

3
41� 51 = b

3
H0

2 3
1
�� ' b

3 4
1
� � ' 5

1
=�b

3
H

0

a
3 41� 51�a

3 �1=0

� ' a
3
4

1
�2 � ' 5

1
�a

3
�

1
=0

�
� '!

�

�
0

all �61 terms vanish

� 3
1
=

�2 � '�1� �� '�1� �b
3
�a

3
� H

0

�2 � '�1� �� '�2��2
a

3

b
3
�� '�1�2

, �
1
=

�9 � ' H
0

�2 � '�1� �� '�2��2
a

3

b
3
�� '�1�2

 The potential outside the spherical shell corresponds to a uniform field H0 plus a 

dipole field with dipole moment 31 oriented parallel to H0. Inside the cavity, there 

is a uniform magnetic field parallel 
to H0, equal to -�1.

 with �/�0~103 to 106, a shield causes a 

great reduction in the field inside it, even 
with a relatively thin shell.
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 At the interface between conductor & nonconductor, 
fields with harmonic time dependence penetrate a 
distance of the order of �=(2/�71)1/2 into 
the conductor.

 define magnetostatic problems with perfect 
conductors as the limit of varying fields as 
7�0, provided at the same time that 
71�2. Then the magnetic field can 
exist outside and up to the surface 
of the conductor, but not inside.

 

5.13 Effect of a Circular Hole in a Perfectly Conducting Plane with 
an Asymptotically Uniform Tangential Magnetic Field on One Side
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 Comparing the magnetic problem with the similar electrostatic problem shows 
the roles of tangential and normal components of fields have been interchanged.

 The dipoles point is parallel to the asymptotic fields, but the magnetic moment is 
2 times larger than the electrostatic moment for the same field strengths.

 For arbitrarily shaped holes the far field in the electrostatic case is that of a 

dipole / to the plane, but the magnetic case has its effective dipole in the plane, 
the direction of the magnetic dipole depends on both the field direction and the 
orientation of the hole.

 Selected problems: 5.3, 5.7, 5.15, 5,20, 5.21, 5.25, 5.26, 5.30, 5.32



  

 Magnetic fields in the presence of  highly permeable materials can be evaluated 
numerically in 2d by the relaxation method or by the finite element method.

 consider the boundary conditions for the field components at the smooth 
interface of a highly permeable medium and a nonpermeable one.

 The boundary conditions are that the tangential component of H and the normal 
component of � are continuous across the interface, if no surface currents.

 For a given external field B(0) in the nonpermeable region, the components of � 
(& H) in the highly permeable medium are more closely parallel to the interface.

 These two relations are useful in 
learning the appropriate boundary
conditions of exterior and interior 
problems in the limit �/�0�2.

5.14 Numerical Methods for Two-Dimensional Magnetic Fields
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 The most familiar static magnetic fields are those around a permanent magnet 
of high permeability excited by remote current-carrying windings.

the "external" magnetic field at the surface is perpendicular to the interface.

 Consider a 2d interior problems, with steady current in the 3rd  direction in a 
uniform, highly permeable conducting medium. The current produces a magnetic 
induction both inside and outside the medium.

 The boundary conditions assure that � is ( to the 
surface just inside as �/�0�2.

 If the internal field is tangential to the boundary 
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 The vector potential is constant along the boundary curve. We can infer that in 

the interior region the magnetic field lines are ( to the contours of constant Az.

 �=�×A � the density of  force lines is the derivative of Az / to the surfaces of 

constant value; the spacing of contours of constant shows the intensity and the 
direction of the field.

 The const value of Az on the contour must be specified to solve the Poisson eqn 

numerically.

 the vector potential is arbitrary to the addition of the gradient of a scalar

 The value of Az on С is not physically meaningful and is not needed.

 Powerful numerical codes exist to solve more realistic magnetic field problems 
where the permeable materials have large, but not infinite, values of �/�0.
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 Faraday (1831) observed a transient induced current in a circuit if 
  (a) the steady current in an adjacent circuit is turned on or off, 
  (b) the adjacent circuit with a steady current is moved relative to the 1st circuit,
  (c) a permanent magnet is thrust into or out of the circuit.

 Faraday attributed the transient current to a changing magnetic flux. The 
changing flux induces an electric field around the circuit, the line integral of 

which is called the electromotive force. The electromotive force causes a current.

The induced electromotive force around the 
circuit is proportional to the time rate of 
change of magnetic flux linking the circuit. 

 The sign is specified by Lenz's lawLenz's law, stating 
that the induced current is in the direction
to oppose the change of flux through the circuit.

 Before special relativity, physical laws are considered invariant under Galilean 
transformations, ie, physical phenomena are the same when viewed by 2 
observers moving with a constant velocity relative to one another, provided the 

coordinates are related by the Galilean transformation, x�=x-vt, t�=t.

5.15 Faraday's Law of Induction 
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 the same current is induced in a secondary circuit whether it is moved while the 
primary circuit through which current is flowing is stationary or it is held fixed 

while the primary circuit is moved in the same relative manner.

                                                            The electromotive force is proportional to 

the total time derivative of the flux�the flux can be changed by changing the 
magnetic induction or by changing the shape/orientation/position of the circuit.

 The circuit С can be thought of as any closed path in space, not necessarily an 
electric circuit. Then the eqn becomes a relation between the fields themselves.

 If the circuit is moving with a velocity, the total time derivative 
must take into account this motion

 The flux through the circuit may change because 
  (a) the flux changes with time at a point, or 
  (b) the translation of the circuit changes the location of the boundary.
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 think of the circuit and surface as instantaneously at a certain position in space 
in the laboratory

 A charged particle co-moving with in a circuit experiences a force qE�. When 

viewed from the laboratory, the charge experiences a force qv;B  �  k=1.

E' is in the rest frame of circuit, the time derivative is a total time derivative.
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 the creation of a steady-state configuration of currents and associated magnetic 
fields involves an initial transient period during which the currents and fields are 
brought from 0 to the final values.

 If the magnetic flux through a circuit changes, an electromotive force is induced 
around it. To keep the current constant, the sources of current must do work.

 

5.16 Energy in the Magnetic Field
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 The change in energy when an object of �1 is placed in a magnetic field with 

fixed current sources can be treated in analogy with the electrostatics [Sec. 4.7]. 

 This sign difference comes from the work done by the sources against the emf.

 the magnetic problem with fixed currents is analogous to the electrostatic 
problem with fixed potentials on the surfaces that determine the fields.

 for a small displacement the work done against the induced emf 's is twice as 
large as, and of the opposite sign to, the potential-energy change of the body.

 the force acting on the body

 W is the total energy required to produce the configuration, whereas U includes 

only the work to establish the permanent magnetic moment in the field, not the 
work to create the magnetic moment and to keep it permanent.     
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A. Coefficients of Self- and Mutual InductanceA. Coefficients of Self- and Mutual Inductance 

 To establish the connection between the current density and the flux linkage

For self-inductance, the physical argument is the same.

5.17 Energy and Self- and Mutual Inductances 
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 For current in a medium of ���0, it is the best to use (7) for magnetic energy.

 

B. Estimation of Self-Inductance for B. Estimation of Self-Inductance for 
          Simple CircuitsSimple Circuits

 If the current density is uniform, from symmetry and Ampere's law the magnetic 
induction is azimuthal

 assume the wire and the medium are nonpermeable                           
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 At distances large compared to A1/2, the falloff of the magnetic induction as 1/� is

replaced by a dipole field with

4 comments:

(1)

(2)

(3) High frequency can get rid of the interior contribution because the current 
     will be confined to near the surface of the wire.

(4)
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 Quasi-staticQuasi-static: the finite speed of light can be neglected and fields treated as if 
they propagated instantaneously.

 It is the regime where the system is small compared with the EM wavelength. It 
permits neglect of the contribution of the Maxwell displacement current to 
Ampere's law. And the magnetic fields dominate.  

5.18 Quasi-Static Magnetic Fields in Conductors; Eddy Currents; 
Magnetic Diffusion
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 The diffusion eqn allows us to estimate the time for decay of an initial 
configuration of fields with typical spatial variation.

 For a copper sphere of radius 1cm, the decay time of some initial � field inside 
~5-10 ms; for the molten iron core of the earth ~ 105 years.

A. Skin Depth, Eddy Currents, A. Skin Depth, Eddy Currents, 
Induction HeatingInduction Heating
 Boundary conditions

 The linearity of the diffusion eqn 
implies that there is only an 

x-component throughout the half-space, Hx(z>0,t).

 For copper at room temperature

  For seawater  
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The magnetic field falls off exponentially in z, with a spatial oscillation of the 

same scale, being confined mainly to a depth less than the skin depth.

 �only  у-component of E:

 For very small skin depth, the volume current flow in the region within O(�) of 

the surface acts as a surface current to reduce the magnetic field to zero for z��. 
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 The time-averaged power input per unit volume

 The heating of the conducting medium to a depth of the order of the skin depth 
is the basis of induction furnaces and of microwave cookers.

B. Diffusion of Magnetic Fields in Conducting MediaB. Diffusion of Magnetic Fields in Conducting Media

 consider 2 infinite uniform current sheets, parallel to each other and located a 

distance 2a apart, at z=-a and z=+a. For t<0

 For J(t�0)=0, A & H decay according to the diffusion eqn.  

 use Laplace transform to separate the space and time dependences     
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