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1 Problem

An electrically neutral current-loop, with magnetic dipole m0, that is at rest in a static,
uniform electric field E experiences no force or torque. However, if that system is observed
in the lab frame where the loop has velocity v parallel to E, and v � c, where c is the speed
of light, then there appears to be an electric dipole moment,1 p = v/c×m0 associated with
the loop (in Gaussian units). The torque on this moment due to the electric field (which has
strength E + O(v2/c2) in this frame) is2 τ = p× E = Evm0/c.

Can/should the torque be different in different frames of reference?
The paradox is compounded by supposing the static, “uniform” electric field is due to a

single electric charge q at large, fixed distance from the magnetic moment in the rest frame
of the latter, and the lab-frame velocity v is along the line of centers of the charge and
moment. Discuss the force on charge q in the lab frame.

This paradox was recently posed by Mansuripur [2]. It is a conceptual variant of a famous
problem by Shockley [3] that introduced the concept of “hidden mechanical momentum.”

2 Solution

Note that the magnetic moment of a loop of current I of radius a has the magnitude m0 =
πa2I/c, so the lab-frame torque, of magnitude τ = Evm0/c = πa2IEv/c2, is an effect of
order 1/c2. Hence, the analysis of the problem should include all effects at order 1/c2.

2.1 Polarization Precession?

The presence of the torque τ = p × E suggests that the electric dipole moment p would
“precess” about m0 so as to bring it into alignment with the electric field E.

However, the apparent electric moment p = v/c×m0 is independent of E, and so cannot
be expected to move into alignment with that field.3

It must be that the torque has no effect on the mechanical configuration of the system.

1See, for example, eq. (2) of [1].
2See the Appendix.
3When v is parallel to E (and B = 0), there is no precession of the magnetic moment m0. See, for

example, [4, 5].
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2.2 Field Momentum and “Hidden” Mechanical Momentum in

the Rest Frame

Before considering the problem further in the lab frame, it is useful to note a subtlety in
the rest frame of the system. Namely, the system at rest possesses nonzero electromagnetic
field momentum PEM. Since a system at rest must have zero total momentum, it must also
possess a “hidden” mechanical momentum Pmech equal and opposite to the field momentum.4

This “hidden” momentum is a relativistic effect, of order 1/c2.
For systems in which effects of radiation and of retardation can be ignored, the electro-

magnetic momentum can be calculated in various equivalent ways [7],

PEM =
∫

�A

c
dVol =

∫
E × B

4πc
dVol =

∫
V J

c2
dVol, (1)

where � is the electric charge density, A is the magnetic vector potential (in the Coulomb
gauge where ∇ · A = 0), E is the electric field, B is the magnetic field, V is the electric
(scalar) potential, and J is the electric current density. The first form is due to Faraday [8]
and Maxwell [9], the second form is due to Poynting [11] and Abraham [10], and the third
form was introduced by Furry [12].

We evaluate PEM for a magnetic moment m = πa2I ẑ/c due to current I which flows in
a circular loop of radius a subject to external electric field E that makes angle α to m, i.e.,
E = E(sinα x̂ + cos α ẑ). The largest magnetic field is inside the loop, in the ẑ direction,
so the second form of eq. (1) indicates that PEM will be in the −ŷ direction. This result
is counterintuitive in that the direction of the momentum is not related to the direction of
the velocity (if any). In the present problem PEM is perpendicular to v, so the field angular
momentum (5) is nonzero and position/time dependent for motion along the x-axis.

We use the third form of eq. (1) to compute the field momentum. The external elec-
tric field can be derived from the scalar potential V = −E(x sinα + z cos α),5 and the
y-component of J dVol is Ia cosφ dφ in cylindrical coordinates (ρ, φ, z) centered on the mo-
ment. Then, noting that x = a cosφ and z = 0 on the loop, we find

PEM,y =
∫

V Jy

c2
dVol =

∫ 2π

0

(−Ea cosφ sinα)(Ia cosφ)

c2
dφ = −πa2IE sinα

c2
= −mE sinα

c
.

(2)
That is,6

PEM =
E × m

c
. (3)

As the total momentum of the system at rest must be zero, we infer that there exists
“hidden” mechanical momentum given by

Pmech = −PEM = −E× m

c
. (4)

The momenta (3)-(4) are effects of order 1/c2.

4For commentary on “hidden” momentum, see [6].
5In principle, we should also consider the scalar potential associated with the electric dipole p = v/c×m0,

but this leads to a contribution to the torque of order v2/c2, which we neglect.
6By a similar calculation [13], the field momentum of an electric dipole p in a transverse magnetic field

B is PEM = B× p/2c.
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2.3 Torque and Changing “Hidden” Angular Momentum

A classical magnetic moment m0 has intrinsic mechanical angular momentum L0 = 2Mcm0/Q
where M and Q are the mass and charge of the particles whose motion generates the mo-
ment. In addition, the moment is associated with “hidden” mechanical angular momentum
given by

Lhidden = r × Pmech, (5)

where r is the position of the center of the moment.
In the inertial frame where the magnetic moment has position r = vt = vt x̂, with v � c

(such that the electric field and the moment have the same values as in the moment’s rest
frame to order v/c, and the field momentum and the “hidden” mechanical momentum have
their rest-frame values to order 1/c2), the mechanical angular momentum of the system is7

Lmech = L0 + Lhidden = L0 − vt × E × m0

c
. (6)

To support this time-varying mechanical angular momentum, the system must be subject to
a torque,8

τ =
dLmech

dt
= −v × E × m0

c
. (7)

When E and v are parallel, we can rewrite eq. (7) as

τ = −E × v × m0

c
= p× E. (8)

That is, the “paradoxical” nonzero torque is needed to change the “hidden” mechanical
angular momentum of the system, such that this remains equal and opposite to the field
angular momentum, which latter appears to be time dependent in the lab frame.

2.4 Physical Realizations of Magnetic Moments

The behavior of a moving current loop in an external electric field depends on the physical
nature of the current.

If the current flows in a resistive conductor, that conductor would “shield” the current
from a constant, uniform external electric field E if the conductor is at rest or in uniform
motion with respect to the field. In this case there would be no Lorentz force on the current
due to the external field, and no torque in the frame where the current loop has velocity v.

Similarly, if the current loop is a superconductor, the supercurrent is “shielded” from the
external field, and there is no torque.

A model of a neutral current loop that could realize Mansuripur’s paradox is a pair of
nonconducting, coaxial disks with positive charge fixed to the rim of one and negative charge

7The intrinsic mechanical angular momentum L0 has corrections at order v2/c2, but there are time-
independent in the lab frame.

8Hence, it was wrong of Mansuripur [2] to claim that the existence of a nonzero torque on a moving
magnetic moment is inconsistent with special relativity.
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on the other, with the disks rotating in opposite senses with the same magnitude of angular
velocity. The paradox applies also to models in which the current is a charged, compressible
gas or liquid that flow inside a nonconducting tube (models i and iii of [17]).9

2.5 The External Field is Due to a Single Distant Charge

Another paradox arises if we suppose that the external field E = E, x̂ is due to a single
charge q at x = −d0 for large d.

In the lab frame we might argue that the force on q is due to both the electric field from
the apparent electric dipole v/c × m0 and the magnetic field of the magnetic moment m0,

Fq = q
(
Ep +

v

c
× Bm

)
= q

(
− p

d3
+

v

c
× −m0

d3

)
= −2q

v

c
× m0

d3
= −2qvm0

d3
ŷ. (9)

But, the force on the magnetic moment is zero in the lab frame. How can this be?
The issue is that the fields of a moving dipole are not the same as the fields of the dipoles

obtained by the transformation of the moments in their rest frame [1]. That is, the meaning
of a moving dipole must be considered with care.

The proper calculation is that

Fq = q
(
E +

v

c
× B

)
, (10)

where E and B are the Lorentz transformations of the fields of the magnetic moment m0 in
its rest frame, where

E0 = 0, B0 = −m0

d3
(11)

at charge q. The transforms of these to the lab frame are

E = E0 − v

c
× B0 = −v

c
× B0, B = B0 +

v

c
× E0 = B0. (12)

Using these in eq. (10) we find Fq = 0 as expected.
It remains disconcerting that the electric field in the lab frame at charge q is the negative

of that inferred from the relation p = v/c × m0.

A Appendix

This Appendix transcribes certain arguments of Namias [15]. For related discussion, see
[16, 17].

The expression τ = p × E is valid for the torque on an electric dipole that is at rest in
a static electric field, but if a magnetic field B is present the torque on an electric dipole
p = q(r+ − r−) with velocity v is given by

τ p = r+ × q
(
E +

v

c
×B

)
+ r− ×−q

(
E +

v

c
× B

)
= q(r+ − r−) ×

(
E +

v

c
× B

)

= p× E + p×
(
v

c
×B

)
, (13)

9To have an electrically neutral current loop, one must postulate a pair of such tubes that containing
opposite charged gas/liquid flowing in opposite directions.
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in the limit of a point dipole. Similarly, the torque on a moving, point magnetic dipole
m due to external fields can be deduced by supposing that the dipole consists of a pair of
magnetic charges ±qM subject to the Lorentz force qM(B − v/c × E), which leads to

τ m = r+ × qM

(
B − v

c
× E

)
+ r− ×−qM

(
B − v

c
×E

)
= qM(r+ − r−) ×

(
B − v

c
×E

)

= m ×B − m ×
(
v

c
×E

)
. (14)

In the present example, the external electric field in the frame in which the magnetic
dipole has velocity v, with v � c, is just E to order v/c, and the external magnetic field
is B = −v/c × E. Also, the magnetic moment is m0 and the electric dipole moment is
p = v/c × m0 in this frame, to order v/c. Then, to this order, the total torque on the
moving dipole is

τ = τ p + τ m = p× E− m0 ×
(
v

c
×E

)
. (15)

While the torque is not equal to p×E in general, it does equal this if v is parallel to E (or
if m0 is parallel to v × E).

Spin-1/2 elementary particles have non-classical magnetic moments. As was noted by
Fermi [14], the behavior of these moments at the origin in hyperfine interactions indicates
that they are the quantum equivalents of current loops, rather than pairs of equal and
opposite magnetic charges. It is well-known that these intrinsic moments do not precess
when they move in an electric field with velocity v parallel to an external electric field E
(see, for example, [4, 5].)
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