Classical Electrodynamics Quiz Ch 2 2012/04/02

I. A hollow box has conducting walls defined by 6 planes: y = 0, y = b and z = 0, z = c are held at zero potential, whereas x = -a is at the constant potential -V and x = +a is at the potential +V. Please find the potential at any point inside the box.

II. Consider a 2-dimensional plane polar electrostatic potential, i.e., there is no dependance on the coordinate z. It satisfies the Laplace equation $\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\Phi}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2\Phi}{\partial\phi^2} = 0$. The separation of variables technique considers solutions of the special form $\Phi = R(\rho)\Psi(\phi)$, which depend on a separation constant ν .

(i) Please give the general form for the solutions $R(\rho)$ and $\Psi(\phi)$.

(ii) What restrictions are imposed on ν if the solution is to be continuous for the full 2π range of the angle ϕ and nonsingular as $\rho \to 0$?

(iii) Consider the region between two conducting planes held at *zero* potential which intersect at a corner with a finite opening angle β . Please determine the radial behavior of the surface charge density near the corner.