I. A hollow box has conducting walls defined by 6 planes: $y=0, y=b$ and $z=0, z=c$ are held at zero potential, whereas $x=-a$ is at the constant potential $-V$ and $x=+a$ is at the potential $+V$. Please find the potential at any point inside the box.
II. Consider a 2-dimensional plane polar electrostatic potential, i.e., there is no dependance on the coordinate z. It satisfies the Laplace equation $\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \Phi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \Phi}{\partial \phi^{2}}=0$. The separation of variables technique considers solutions of the special form $\Phi=R(\rho) \Psi(\phi)$, which depend on a separation constant ν.
(i) Please give the general form for the solutions $R(\rho)$ and $\Psi(\phi)$.
(ii) What restrictions are imposed on ν if the solution is to be continuous for the full 2π range of the angle ϕ and nonsingular as $\rho \rightarrow 0$?
(iii) Consider the region between two conducting planes held at zero potential which intersect at a corner with a finite opening angle β. Please determine the radial behavior of the surface charge density near the corner.

