1. Using an appropriate Dirac delta function, please express in spherical coordinates, a threedimensional charge distribution $\rho(\mathbf{x})$ which describes a uniform ring of charge of radius a with total charge Q located in the $x-y$ plane with the center of the ring at the origin.
2. If Φ is the potential due to a volume-charge density ρ within a volume V and a surface charge density σ on the conducting surface S bounding the volume V, while Φ^{\prime} is the potential due to another charge distribution ρ^{\prime} and σ^{\prime}, then

$$
\begin{equation*}
\int_{V} \rho \Phi^{\prime} d^{3} x+\oint_{S} \sigma \Phi^{\prime} d a=\int_{V} \rho^{\prime} \Phi d^{3} x+\oint_{S} \sigma^{\prime} \Phi d a \tag{1}
\end{equation*}
$$

This is known as Green's reciprocation theorem. Can you verify it?

Best wishes, J.M. Nester

