105 學年度第二學期(2017)台大物理系/TIGP 開課課程大綱

"當代原子與分子物理導論"

(Introduction to recent trends in atomic and molecular physics)

Lectures in English on every Tuesday (9:10-12:00) at Room 311 of IAMS

Date	lecturer	Date	lecturer
2/21Tuesday 9:10~12:00	Prof. Kaito Takahashi	5/2Tuesday 9:10~12:00	Prof. Ming-Shien Chang
3/7Tuesday 9:10~12:00	Prof. Kaito Takahashi	5/9 Tuesday 9:10~12:00	Prof. Ying-Cheng Chen
3/14Tuesday 9:10~12:00	Prof. Kaito Takahashi	5/16Tuesday 9:10~12:00	Prof. Ying-Cheng Chen
3/21Tuesday 9:10~12:00	Prof. Michitoshi Hayashi	5/23 Tuesday 9:10~12:00	Prof. Ying-Cheng Chen
3/28Tuesday 9:10~12:00	Prof. Michitoshi Hayashi	6/6Tuesday 9:10~12:00	Prof. Yu-Ju Lin
4/11Tuesday 9:10~12:00	Prof. Jer-Lai Kuo	6/13Tuesday 9:10~12:00	Prof. Yu-Ju Lin
4/18Tuesday 9:10~12:00	Prof. Jer-Lai Kuo		
4/25Tuesday 9:10~12:00	Prof. Ming-Shien Chang		

Kaito Takahashi

Week 1 (2/21)

- 1.5 hours on "Recent success in using quantum simulations to understand interesting physics and chemistry"
 - Using quantum chemistry methods to predict metal surface reactions
 - Ab initio molecular dynamics simulation on liquid/solid phase of water
 - Quantum chemistry calculation of proteins
 - Reaction dynamics using quantum chemistry based trajectories to understand curious reaction features for CD₃H+F
- 1.5 hour on "Born-Oppenheimer approximation and its failures (using equations)"

Week 2 (3/7)

- 2 hours of "Linear Combination of Atomic Orbitals (using equations and figures)"
 - Diatomic molecules (H₂⁺, H₂)
 - Polyatomic molecules using LCAO

1 hours of "Vibration of diatomic molecules"

• Harmonic oscillator, morse oscillator

- 1.5 hours on "Vibration in polyatomic molecules, normal modes"
- 1.5 hours on "Potential Energy Surface and reaction"

Michitoshi Hayashi

Week 1 (3/21)

Wave-particle duality of large molecules

-- Review on the foundation and concept of quantum theory and its application to molecules

Week 2 (3/28)

Van der Waals force and weak interactions

-- Quantum fluctuation, Coulomb interaction, Exchange energy, etc.

Jer-Lai Kuo

Week 1 (4/11)

Understanding structure of water via molecular spectroscopies (I)

-- This lecture will introduce different spetroscopic methods to probe different structures of water in gas, liquid to crystalline phases.

Week 2 (4/18)

Understanding structure of water via molecular spectroscopies (II)

-- We will introduce a few simple examples on how computational methods can be useful to understand experimental data to extract structural information.

.....

Ming-Shine Chang

2 weeks (4/25, 5/2)

- 1. Introduction to atom-photon interaction
 - Two-level atom without spontaneous decay
 - Coherent control on a two-level atom: Rabi's and Ramsey's methods
 - Two-level atom with spontaneous decay
 - Optical Bloch equation
- 2. Atom trapping and cooling

- Optical force on atoms
- Laser cooling
- Magneto-optical trap
- Magnetic trap
- Optical dipole trap
- Evaporative cooling

Ying-Cheng Chen

3 weeks (5/9, 5/16, 5/23)

- 1. Atom-photon interaction in a three-level system (4hrs)
 - Electromagnetically induced transparency (EIT)
 - Slow light, Storage of light and stationary light
 - Nonlinear optics based on the EIT
 - Single photon and bi-photon generation based on EIT
- 2. Coherent manipulation of atoms with lasers
 - Raman transition
 - Controlling the internal and external states
 - Application to quantum information sciences

.....

Yu-Ju Lin

2 weeks (6/6, 6/13)

- 1. Bose-Einstein condensates
 - stationary state and dynamics
 - experimental probe
 - research highlights
- 2. atoms dressed by photons
 - dressed states
 - artificial gauge potential associated with the dressed state