Course Schedule of MST Program ,TIGP

Semester: Fall, 2015 (104 學年度上學期)

Course(科目): Modern Experimental Techniques-Physics 現代實驗技術-物理

Time(時間): F6F7 Friday (14:20~16:20)

Room(教室): R311 IAMS 中研院原分所 R311(台大校園)

NTHU coordinator(清大教師): 倪其焜

Course speakers(授課老師): Jim Lin 林志民、Ker-Jar Song 宋克嘉教授、

Juen-Kai Wang 王俊凱、Jyhpyng Wang 汪治平教授

Required(必修課), credit(學分): 2

Course No.(科號): TIGP722300, PHT048

Date	lecturer	Date	lecturer
9/18 Friday 14:2 0~16:10	Prof. Juen-Kai Wang	11/27 Friday 14:2 0~16:10	Prof. Jyhpyng Wang
9/25 Friday 14:2 0~16:10	Prof. Juen-Kai Wang	12/4 Friday 14:2 0~16:10	Prof. Jyhpyng Wang
10/2 Friday 14:2 0~16:10	Prof. Juen-Kai Wang	12/11 Friday 14:2 0~16:10	Prof. Jim J. Lin
10/16 Friday 14:2 0~16:10	Prof. Juen-Kai Wang	12/18 Friday 14:2 0~16:10	Prof. Ker-Jar Song
10/23 Friday 14:2 0~16:10	Prof. Juen-Kai Wang	12/25 Friday 14:2 0~16:10	Prof. Ker-Jar Song
10/30 Friday 14:2 0~16:10	Prof. Juen-Kai Wang	1/8/2016 Friday 14:2 0~16:10	Prof. Jim J. Lin
11/6 Friday 14:2 0~16:10	Prof. Jyhpyng Wang	1/15/2016 Friday 14:2 0~16:10	Prof. Jyhpyng Wang
11/13 Friday 14:2 0~16:10	Prof. Jyhpyng Wang		
11/20 Friday 14:2 0~16:10	Prof. Jyhpyng Wang		

The course of Modern Experimental Techniques is composed of four component mini-courses: (1) Vacuum Technology taught by Profs. Ker-Jar Song and Jim Jr-Min Lin, (2) Optics, Lasers, and Optical Signal Detection taught by Prof. Juen-Kai Wang, andb(3) Laboratory Electronics taught by Prof. Jyhpyng Wang

Speaker	(2 Weeks)
	Prof. Jim J. Lin
	林志民教授
	(2 Weeks)
	Prof. Ker-Jar Song
	宋克嘉教授
	(Lin): Vacuum concepts; vacuum generation, measurement, and
Class Outline	diagnosis.
Class Outilite	(Song): Basics of ultrahigh vacuum: adsorption and desorption of
	chemical species on surface. Murphy's law.

	(Lin):
	Gas mean free path, gas flow, outgas, differential pumping, sealing, pumps, pressure measurements, leaks, etc. Practical way to achieve good vacuum.
	(Song):
	UHV Option: experimenting with a real ultrahigh vacuum system.
	This is a very time consuming option for both the student and the
T., 4., 2. 4. 2	teacher. Only those who really need to become an expert in ultrahigh
Introduction	vacuum techniques should take this option. For anyone who takes this
	option, one has to be able to bring a vacuum system from atmosphere
	to a pressure in the 10^{-10} torr in order to pass. A UHV chamber with a
	residual gas analyzer will be made available so that the student gets to
	know what happens in the chamber for each step of his operation.
	Students will practice venting the system, replacing components,
	pumping it down, make leak and/or dirt assessment, baking, e-beam
	bombardment, and all kind of tricks that can help bring ultra-high
	vacuum the fastest way.
Grading	(Lin): Exam and Homework.
Grading	(Song): Home work only.
	1. Building Scientific Apparatus, 2 nd edition or 3 rd edition by Moore,
Textbook	Davis and Coplan
	2. Operating manuals of components of the UHV system.

	(6 Weeks)
Speaker	Prof. Juen-Kai Wang
	王俊凱教授
	Optics, Lasers, and Optical Signal Detection
	1. ABC of optical components: optics, opto-mechanics, vibration
	isolation and motion control
	2. Know your laser system: basic principles, laser engineering,
Class Outline	frequency conversion and laser safety
	3. Detect optical radiation: intensity, wavelength, polarization and
	phase
	4. Build an optical instrument: initial concept, computer
	drawing/simulation, revision and construction

	This course is to provide basic knowledge to use optical and laser
	instruments in laser laboratories and eventually to have a basic
Introduction	training about how to construct an optical setup for a specific
Introduction	experiment. Furthermore, the course provides a hand-on
	experimental experience to learn how to manipulate optical
	components.
Gradina	1. A construction plan for an optical setup: (60%)
Grading	2. A hand-on experiment: on-site test (20%) and report (20%)
	1. Fundamentals of Photonics, B. E. A. Saleh and M. C. Teich (John
Textbook	Wiley & Sons, New York 1991).
TEXIDOOK	2. Laser Spectroscopy: Basic concepts and instrumentation, W.
	Demtröder (Springer-Verlag, Berlin, 1996)

	(6Weeks)
Speaker	Prof. Jyhpyng Wang
	汪治平教授
	(3) Laboratory Electronics
	List of subjects:
	Part 1: circuit construction: circuit elements and diagrams,
C1 O41:	construction and diagnosis tools, soldering and assembling, shielding
Class Outline	and grounding, circuit protection
	Part 2: basic electronics: diodes and transistors, impedance and
	passive filters, amplifiers, active filters and oscillators,
	negative-feedback control, digital circuits, digital/analog interface
	In a modern laboratory, data are transmitted by electronic signals.
	Machines are also controlled by electronic signals. Therefore it is
	extremely important for students to know what is going on behind the
	switches, knobs, cables, detectors, etc. In this course we will teach
	students the basics of real-world electronics. In part 1, we begin with
	an extensive introduction to common electronic components and tools,
Introduction	and then we teach some important techniques of circuit construction.
Introduction	In part 2, we shall discuss common building blocks of electronic
	circuits. Starting from the most basic diodes and transistors, we show
	the construction of filters, amplifiers, and oscillators. Then we move
	to feedback control, and finally to digital circuits and digital/analog
	interface. These building blocks are so often used in laboratory
	electronics that by knowing them well, students can build up the
	confidence in handling laboratory electronics.
	1. Constructing a working electronic device, such as an electronic
Grading	clock, a stepping motor system, a function generator, a regulated
	power supply, an audio amplifier, an electronic door-bell, a

	telephone answering machine, an effect box for electric guitars, an automatic egg boiler, an echo circuit for karaoke, an infrared alarm circuit, a flood alarm circuit, etc. (50%) 2. Written examination. (50%)
Textbook	The art of electronics, 2nd ed. Horowitz and Hill, Cambridge Univ. Press.